DOI QR코드

DOI QR Code

COMPUTATION OF THE NIELSEN TYPE NUMBERS FOR MAPS ON THE KLEIN BOTTLE

  • Kim, Hyun-Jung (Department of Mathematics Sogang University) ;
  • Lee, Jong-Bum (Department of Mathematics Sogang University) ;
  • Yoo, Won-Sok (Department of Applied Mathematics Kumoh National Institute of Technology)
  • Published : 2008.09.30

Abstract

Let f : M ${\rightarrow}$ M be a self-map on the Klein bottle M. We compute the Lefschetz number and the Nielsen number of f by using the infra-nilmanifold structure of the Klein bottle and the averaging formulas for the Lefschetz numbers and the Nielsen numbers of maps on infra-nilmanifolds. For each positive integer n, we provide an explicit algorithm for a complete computation of the Nielsen type numbers $NP_n(f)$ and $N{\Phi}_{n}(f)\;of\;f^{n}$.

Keywords

References

  1. D. V. Anosov, Nielsen numbers of mappings of nil-manifolds, Uspekhi Mat. Nauk 40 (1985), no. 4(244), 133-134
  2. R. B. S. Brooks, R. F. Brown, J. Pak, and D. H. Taylor, Nielsen numbers of maps of tori, Proc. Amer. Math. Soc. 52 (1975), 398-400 https://doi.org/10.2307/2040171
  3. O. Davey, E. Hart, and K. Trapp, Computation of Nielsen numbers for maps of closed surfaces, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3245-3266 https://doi.org/10.1090/S0002-9947-96-01693-5
  4. B. Halpern, Periodic points on tori, Pacific J. Math. 83 (1979), no. 1, 117-133 https://doi.org/10.2140/pjm.1979.83.117
  5. P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds, C. R. Math. Rep. Acad. Sci. Canada 16 (1994), no. 6, 229-234
  6. P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds. I, Topology Appl. 76 (1997), no. 3, 217-247 https://doi.org/10.1016/S0166-8641(96)00100-9
  7. P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds. II, Topology Appl. 106 (2000), no. 2, 149-167 https://doi.org/10.1016/S0166-8641(99)00079-6
  8. P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on solvmanifolds. III. Calculations, Quaest. Math. 25 (2002), no. 2, 177-208 https://doi.org/10.2989/16073600209486009
  9. B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, 14. American Mathematical Society, Providence, R.I., 1983
  10. S. W. Kim, J. B. Lee, and K. B. Lee, Averaging formula for Nielsen numbers, Nagoya Math. J. 178 (2005), 37-53 https://doi.org/10.1017/S0027763000009107
  11. J. Y. Kim, S. S. Kim, and X. Zhao, Minimal sets of periods for maps on the Klein bottle, J. Korean Math. Soc. 45 (2008), no. 3, 883-902 https://doi.org/10.4134/JKMS.2008.45.3.883
  12. J. B. Lee and K. B. Lee, Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys. 56 (2006), no. 10, 2011-2023 https://doi.org/10.1016/j.geomphys.2005.11.003
  13. K. B. Lee, Maps on infra-nilmanifolds, Pacific J. Math. 168 (1995), no. 1, 157-166 https://doi.org/10.2140/pjm.1995.168.157

Cited by

  1. Minimal number of periodic points for smooth self-maps of RP3 vol.157, pp.10-11, 2010, https://doi.org/10.1016/j.topol.2010.02.026
  2. Nielsen Type Numbers of Self-Maps on the Real Projective Plane vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/327493
  3. Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds vol.187, pp.1, 2017, https://doi.org/10.1007/s10711-016-0199-4
  4. Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol 1 4 $\operatorname{Sol}_{1}^{4}$ -geometry vol.2015, pp.1, 2015, https://doi.org/10.1186/s13663-015-0427-x
  5. Estimation of the minimal number of periodic points for smooth self-maps of odd dimensional real projective spaces vol.159, pp.18, 2012, https://doi.org/10.1016/j.topol.2012.08.027
  6. The Nielsen and Reidemeister numbers of maps on infra-solvmanifolds of type (R) vol.181, 2015, https://doi.org/10.1016/j.topol.2014.12.003
  7. Combinatorial scheme of finding minimal number of periodic points for smooth self-maps of simply connected manifolds vol.13, pp.1, 2013, https://doi.org/10.1007/s11784-012-0076-1
  8. Homotopical theory of periodic points of periodic homeomorphisms on closed surfaces vol.156, pp.15, 2009, https://doi.org/10.1016/j.topol.2009.07.012
  9. The Nielsen numbers of iterations of maps on infra-solvmanifolds of type $$\mathrm {(R)}$$(R) and periodic orbits vol.20, pp.2, 2018, https://doi.org/10.1007/s11784-018-0541-6