• 제목/요약/키워드: Nickel alloys

검색결과 189건 처리시간 0.023초

백색금 합금용 모합금의 실리콘 함량에 따른 물성변화 (Properties of the Master Alloys for White Gold Products with Silicon Contents)

  • 송정호;노윤영;이현우;최민경;송오성
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.90-94
    • /
    • 2015
  • We prepared 8 samples of non-silver and silver-added master alloys containing silicon to confirm the existence of nickel-silicides. We then prepared products made of 14K and 18K white gold by using the prepared master alloys containing 0.25, 0.35, and 0.50 wt% silicon to check for nickel release. We then employed the EN 1811 testing standard to investigate the nickel release of the white gold products, and we also confirmed the color of the white gold products with an UV-VIS-NIR-color meter. We observed $NiSi_x$ residue in all master alloys containing more than 0.50 wt% Si with EDS-nitric acid etching. For the white gold products, we could not confirm the existence of $NiSi_x$ through XRD after aqua-regia etching. In the EN 1811 test, only the white gold products with 0.25 wt% silicon master alloys successfully passed the nickel release regulations. Moreover, we confirmed that our white gold products showed excellent Lab indices as compared to those of commercial white gold ones, and the silver-added master alloys offered a larger L index. Our results indicate that employing 0.25 wt% silicon master alloys might be suitable for white gold products without nickel-silicide defects and nickel release problems.

구강점막 상피세포에 대한 치과 주조용 비귀금속 합금의 세포독성 (CYTOTOXICITY OF DENIAL CAST BASE METAL ALLOYS ON HUMAN ORAL KERATINOCYTES)

  • 최영진;육종인;정문규
    • 대한치과보철학회지
    • /
    • 제37권6호
    • /
    • pp.717-729
    • /
    • 1999
  • Although many studies on the cytotoxicity of the dental cast base metal alloys and their components have been carried out, the results are rather conflicting because of the different type of cells used and the various experimental procedures taken. Recently a number of scientists have claimed that it would be preferable to focus on the use of cells from relevant specific location of the human bodies. Consequently, the primary cultured oral keratinocyte derived from oral mucous along with nickel chloride and several of widely used dental cast base metal alloys(two Ni-Cr alloys and one Co-Cr alloy)in domestic were selected for this study, from which 1) The amounts of released metal ions were determined using atomic absorption spectrometry, 2) The cytotoxicity of nickel chloride and dental cast base metal alloys was evaluated via MTT assay, and finally, 3) The amounts of released metal ions and the cytotoxicity of nickel chloride were correlated with the cytotoxicity of dental cast base metal alloys And, the results were summarized as follows; 1. Nickel ion from Ni-Cr alloys and Cobalt ion from Co-Cr alloys resulted in maximum releasing rate during first 2h hours, followed by a decrease in releasing rate with time. Chromium ion were found to be minimal in all alloys. 2. In cytotoxic test. with $40{\mu}M,\;80{\mu}M$ of nickel chloride, there were observed an increase in the relative cell number compared to control samples after 24 hours. With $160{\mu}M$, there was found to be no difference in the relative cell number with control, except that 48 hour showed a increase in relative cell number. With $320{\mu}M$, the relative cell number remained constant and decreased after 48 hours, and with $640{\mu}M$, a continuing decrease in relative cell number was observed throughout test period. 3 The sensitivity of primary cultured oral epithelium to nickel was lower compared to the cells used in other studies. 4. CB-80 Soft and Regalloy showed no cytotoxicity to primary cultured oral epithelium and New crown resulted in a slight cytotoxicity. In conclusion, it was shown that the primary cultured oral keratinocytes could be applied successfully as testing cells in cytotoxicity test. Futhermore, the dental cast base metal alloys used in this study were found to be biocompatible.

  • PDF

니켈기 내열합금 절삭기 공구에 따른 마모와 칩생성 (Wear and Chip Formation by the Tool on Cutting Nickel-based Heat Resisting Alloy)

  • 김우순;김경우;김동현
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.30-35
    • /
    • 2001
  • Nickel-based heat resisting alloys are commonly used for high temperature application such as in aircraft engines and gas turbines. In this paper, the machinability of Nickel-based heat resisting alloys was investigated with respect to the wear and the chip formation by tool type and cutting condition. Relationship between three types of tool and chip formation was experimentally investigated. Among the three types of tool tested, coated tools(CVD, PVD) ara available for the difficult-to-cut-materials such as Nickel-based heat resisting alloys and etc.

  • PDF

가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究) (An experimental study of the strength and internal structure of solder joint of fixed partial denture)

  • 박상남;계기성
    • 대한치과보철학회지
    • /
    • 제23권1호
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

전해니켈도금된 대면적 롤금형 가공시 단결정 다이아몬드공구의 마모에 관한 연구 (Wear of Single Crystal Diamond(SCD) Tools in Ultra Precision Turning of Electro-Nickel Plated Drum)

  • 이동윤;홍상현;강호철;최헌종;이석우
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.621-628
    • /
    • 2009
  • Nickel-phosphorus alloys are attractive materials for diamond turning applications such as fabrication of large optics and other high precision parts. It is also well-known that the higher phosphorus content of the alloys minimizes the diamond tool wear. Due to the weakness of electoless nickel plating that the phosphorus contents is limited to 13-14% (wgt), increased attention has been paid at electro-nickel plating which enables the alloys with 15-16% phosphorus. In this study, experiments were carried out to observe the wear characteristic of single crystal diamond tools in micro-grooving of electro-nickel plated drums. The experiments shows that long distance (50km) machining of micro-grooving on electro-nickel plated drum is possible with a single crystal diamond tool without any significant tool wear and defective machined surface.

Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications

  • Rittapai, Apiwat;Urapepon, Somchai;Kajornchaiyakul, Julathep;Harniratisai, Choltacha
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.215-223
    • /
    • 2014
  • PURPOSE. This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. MATERIALS AND METHODS. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (${\alpha}$=0.05). The alloy toxicity was evaluated according to the ISO standard. RESULTS. The solidus and liquidus points of experimental alloys ranged from $1023^{\circ}C$ to $1113^{\circ}C$ and increased as the nickel content increased. The highest ultimate tensile strength ($595.9{\pm}14.2$ MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity ($113.9{\pm}8.0$ and $122.8{\pm}11.3$ GPa, respectively), but also had a value of 0.2% proof strength ($190.8{\pm}4.8$ and $198.2{\pm}3.4$ MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. CONCLUSION. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

Corrosion and Sliding Properties of the Nickel-Based Alloys for the Valve Seats Application

  • Honda, Tadashi
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.92-98
    • /
    • 2008
  • This paper describes the experiments of the corrosion and the sliding tests of the nickel-based alloys for the gate valve seating materials used at high pressure and temperature. The general corrosion rates and IGC susceptibility are tested in pressurized water at 533 K and 575 K and in Strauss test solution. The sliding tests have been done in pressurized water at 293 k, 473 K and 573 k. The alloys containing above 10% chromium may have the anti-corrosion properties that could be applied to the valve seats for the power plants. The good sliding performance and the good pressure tightness are obtained when the disc specimens that have hardness 500 to 600 Hv combined with the seat specimens that have hardness 250 to 410 Hv containing about 40 percent of iron. The large size gate valves sliding tests have certified the test results. The anti-wear properties of the seat alloy and the anti-IGC susceptibility of the disc alloy could be improved by the addition of silicon and niobium, respectively.

전착된 나노 결정질 니켈-철 합금의 미세구조 및 물성에 대한 철의 영향 (Effect of Iron Co-deposited Nickel on the Microstructures and Properties of Electroplated Nanocrystalline Nickel-iron Alloys)

  • 변명환;조진우;송용승
    • 한국표면공학회지
    • /
    • 제38권4호
    • /
    • pp.156-162
    • /
    • 2005
  • Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electro-plating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by Thin Film Stress Measurement using Stoney's formula. Surface morphology and roughness were investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The results of this study revealed that at a grain size of approximately $17\~24$nm the hardness, internal stress and roughness depend strongly on the iron content. With increasing the iron content, the hardness and internal stress of the deposits increased. An excellent correlation between the increase in the internal stress and the loss of (200) texture was found.

Effect of Precipitate on the Electrochemical Potentiokinetic Reactivation Behaviors of Stainless Steels and Nickel Base Alloys

  • Wu, Tsung-Feng;Chen, Tzu-Sheng;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.59-67
    • /
    • 2003
  • Electrochemical potentiokinetic reactivation (EPR) tests are used to evaluate the degree of sensitization (DOS) of stainless steels and nickel base alloys. The validity of EPR test to detect DOS of these alloys, however, depends all the electrolyte composition employed. The existence of precipitates such as NbC, and TiC, etc. in the alloys also affects the reactivation behaviors of these alloys. In this investigation, the reactions involved during EPR processes are analyzed. In 0.5 M $H_2SO_4$+ 0.01 M KSCN electrolyte, a reactivation peak associated with the localized attack around NbC, different from that of intergranular corrosion, is observed for the solution annealed 347 SS. For solution annealed Alloy 600, matrix corrosion and localized attack around TiC with distinct anodic peaks appeared in the EPR curves are seen in the $H_2SO_4$+ KSCN electrolyte. With proper adjustment of elect rolyte composition, the contribution from intergranular corrosion, as a result of chromium carbide precipitation along the grain boundaries, can be distingui shed from the matrix and localized corrosion for the sensitized Alloy 600.

전착법으로 제조한 나노결정질 저Ni 퍼멀로이의 미세 조직과 자기적 특성 (Microstructure and Mgnetic Properties of Electrodeposited Nanocrystalline Low-Nickel Permalloy)

  • 허영두;이흥렬;황태진;임태홍
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.455-460
    • /
    • 2003
  • Microstructural and magnetic properties of nanocrystalline Fe-46 wt%Ni and Fe-36 wt%Ni alloys were investigated. Alloys were prepared by the electrodeposition process. The electrolytes were iron sulfate/nickel chloride-based and iron chloride/nickel sulfamate-based solutions. Fe-46 wt%Ni alloy was FCC structure with grain size of 10 nm, but FCC and BCC phases were found in Fe-36 wt%Ni alloy and its grain size was smaller. Effective permeability of Fe-36 wt%Ni alloy was higher than that of Fe-46 wt%Ni alloy in the high frequency range because of large electrical resistivity and small eddy current loss resulted from grain size decrease. Up to $300^{\circ}C$ of annealing temperature, grain growth of Fe-Ni alloys slowly occured. Conversely, annealing above $450^{\circ}C$ led to a drastic grain growth. In that case, effective permeability was decreased at the temperature lower than $300^{\circ}C$ but at $300^{\circ}C$ or higher effective permeability was increased. At the high frequency of 1 MHz, electrodeposited Fe-Ni alloys had higher effective permeability with an decrease in the grain size.