DOI QR코드

DOI QR Code

Properties of the Master Alloys for White Gold Products with Silicon Contents

백색금 합금용 모합금의 실리콘 함량에 따른 물성변화

  • Song, Jeongho (Department of Materials Science and Engineering, University of Seoul) ;
  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Hyeonwoo (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, Minkyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 송정호 (서울시립대학교 신소재공학과) ;
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 이현우 (서울시립대학교 신소재공학과) ;
  • 최민경 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2014.12.31
  • Accepted : 2015.01.21
  • Published : 2015.02.27

Abstract

We prepared 8 samples of non-silver and silver-added master alloys containing silicon to confirm the existence of nickel-silicides. We then prepared products made of 14K and 18K white gold by using the prepared master alloys containing 0.25, 0.35, and 0.50 wt% silicon to check for nickel release. We then employed the EN 1811 testing standard to investigate the nickel release of the white gold products, and we also confirmed the color of the white gold products with an UV-VIS-NIR-color meter. We observed $NiSi_x$ residue in all master alloys containing more than 0.50 wt% Si with EDS-nitric acid etching. For the white gold products, we could not confirm the existence of $NiSi_x$ through XRD after aqua-regia etching. In the EN 1811 test, only the white gold products with 0.25 wt% silicon master alloys successfully passed the nickel release regulations. Moreover, we confirmed that our white gold products showed excellent Lab indices as compared to those of commercial white gold ones, and the silver-added master alloys offered a larger L index. Our results indicate that employing 0.25 wt% silicon master alloys might be suitable for white gold products without nickel-silicide defects and nickel release problems.

Keywords

References

  1. J. S. Lin, C. C. Chen, E. W. G. Diau and T. F. Liu, J. Mater. Process. Tech., 206, 425 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.069
  2. S. Shafiee, E. Topal, Resour. Pol., 35(3), 178 (2010). https://doi.org/10.1016/j.resourpol.2010.05.004
  3. X. J. Zhang, K. K. Tong, R. Chan and M. Tan, J. Mater. Process. Tech., 48, 603 (1995). https://doi.org/10.1016/0924-0136(94)01699-2
  4. C. Cretu and E. V. D. Lingen, Gold Bull., 32(4), 115 (1999). https://doi.org/10.1007/BF03214796
  5. G. P. O'Connor, Gold Bull., 11(2), 35 (1978). https://doi.org/10.1007/BF03215446
  6. S. Benjamin, Metall. Trans. Phys. Metall. Mater., 1, 2943 (1970).
  7. R. Suss and M. D. Toit, Gold Bull., 37, 196 (2004). https://doi.org/10.1007/BF03215213
  8. K. E. Saeger, J. Rodies, Gold Bull., 10(1), 10 (1977). https://doi.org/10.1007/BF03216519
  9. S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang and H. Chen, Thin solid films, 494, 307 (2006). https://doi.org/10.1016/j.tsf.2005.08.158
  10. T. Takasugi, Intermetallics, 8, 575 (2000). https://doi.org/10.1016/S0966-9795(99)00141-7
  11. J. P. Randin and J. Biomed. Mater. Res., 22(7), 649 (1988).
  12. H. Kerosuo, A. Kullaa, E. Kerosuo, L. Kanerva and A. H. Pettersen, Am. J. Orthod. Dentofacial. Orthoped., 109(2), 148 (1996). https://doi.org/10.1016/S0889-5406(96)70175-0
  13. EN 1811:2011/AC:2012, European Committee for standardization (2011).