• 제목/요약/키워드: Ni-coating

검색결과 563건 처리시간 0.034초

Corrosion Resistance of Mg-Added Galvannealed Steel Sheets with Nano-Composite Coating

  • Jo, Du-Hwan;Yun, Sang-Man;Paik, Doo-Jin;Kim, Myung-Soo;Hong, Moon-Hi
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2020
  • As competition among global automakers intensifies, demand for materials that are better in price and performance is increasing. While steel and plastic materials compete for automotive fuel tanks, plastic materials have advantages such as light weight for automobiles. However, they have high prices. Accordingly, in this paper, four types of Zn-X plated steel sheets, electroplating (X = none, Sn) and galvannealed (X = Fe, Fe-Mg), were manufactured and their applicability as a fuel tank material was evaluated. Nano-composite coating solution with good conductivity was treated on the surface of plated steels using a roll coater and then cured through induction furnace to improve corrosion resistance. Quality characteristics such as corrosion resistance, fuel resistance to diverse gasoline and diesel fuels, and seam weldability were evaluated for the above plated steels. Their properties were compared and analyzed with conventional Zn-Ni electroplating steels. Among the above plated steels, Zn-Fe-Mg galvannealed steels coated with nano-composite coating exhibited better properties than other steels. Detailed experimental results suggest that evenly distributed Mg elements on the coating layer play a key role in the enhanced quality performance.

저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석 (Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process)

  • 김재익;이승태;이창희
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Anode-supported Type SOFCs based on Novel Low Temperature Ceramic Coating Process

  • Choi, Jong-Jin;Ahn, Cheol-Woo;Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Yoon, Woon-Ha;Park, Dong-Soo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.338-343
    • /
    • 2015
  • To prevent an interfacial reaction between the anode and the electrolyte layer during the conventional high-temperature co-firing process, an anode-supported type cell with a thin-film electrolyte was fabricated by low-temperature ceramic thick film coating process. Ni-GDC cermet composite was used as the anode material and YSZ was used as the electrolyte material. Open circuit voltage and maximum power density were found to strongly depend on the surface uniformity of the anode functional layer. By optimizing the microstructure of the anode functional layer, the open circuit voltage and maximum powder density of the cell increased to 1.11 V and $1.35W/cm^2$, respectively, at $750^{\circ}C$. When a GDC barrier layer was applied between the YSZ electrolyte and the LSCF cathode, the cell showed good stability, with almost no degradation up to 100 h. Anode-supported type SOFCs with high performance and good stability were fabricated using a coating process.

고품위 자성체 박막 코팅 시스템 (Coating System for High Quality Ferromagnetic Thin Films)

  • 김기범;황윤식;김영식;박장식;박재범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.231-232
    • /
    • 2007
  • Nickel oxide thin films were deposited by the DC magnetron reactive sputtering process under the conditions such as various oxygen flow rates(0, 3, 6, 8, 10 sccm) with constant 33 sccm argon flow rate for the sputtering time of 40 second with the power of 0.3 kW. Sheet resistances were measured by the four point probes. In order to observe discharge voltage characteristics according to the oxygen flow rates, the sputtering processes were performed under the powers of 0.2kW and 0.3kW. The feasibility of the coating system for high quality ferromagnetic thin films was tested through the electromagnetic simulation and the thin film thickness measurement from the experiment. It was shown that a discharge voltage was decreased under the low power and low oxygen flow rate, since the oxygen was quickly saturated on nickel target surface. The sheet resistance was increased as oxygen flow rate increased. The film thickness deposited by the coating system for ferromagnetic target was improved approximately 10% in comparison with previous coating systems.

  • PDF

알루미늄 확산코팅재료의 주기산화 특성에 관한 연구 (A Study on the Cyclic Oxidation Properties of Aluminum Diffusion Coated Materials)

  • 강석철;민경만;김길무
    • 한국표면공학회지
    • /
    • 제32권1호
    • /
    • pp.49-60
    • /
    • 1999
  • The protective oxide scales and coatings formed on high temperature materials must be preserved in high temperature atmosphere. And the thermal stresses induced by thermal cycling and the growth stresses by the formation of oxide scales can cause the loss of adherence and spalling of the oxide scales and coated layers. Among the coating processes Al diffusion coating is favored due to thermochemical stability and superior adherence in an hostile atmosphere. In this study, protective oxide forming element, Al was coated on Ni, Inconel 600 and 690 by diffusion coating process varying coating temperature and time. And the surface stability and adherence of oxide scales formed on those Al diffusion coated materials were evaluated by thermal cycling test. Al diffusion coated specimens showed superior cyclic oxidation resistance compared to bare ones and specimens coated for longer period had better cyclic oxidation resistance, due to the abundant amount of Al in the coated layer. Meanwhile Al diffusion coated Inconel 600 and 690 showed improved cyclic oxidation resistance by the effect of Al in the coated layer and Cr in the substrate. Comparing both Al diffusion coated Inconel 600 and 690, Al diffusion coated Inconel 690 maintained better adhesion between coated layer and substrate by virtue of the bridging effect resulting from the segregation of Cr in the interdiffusion zone.

  • PDF

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

표면처리된 Ni-Cr계 합금의 FLiNaK 용융염 하에서의 고온 안정성 (Thermal stability of surface modified Ni-Cr-alloys in molten FLiNaK salt)

  • 조현;방광현;이태석;이병우
    • 한국결정성장학회지
    • /
    • 제22권5호
    • /
    • pp.227-232
    • /
    • 2012
  • 차세대 원자력발전용 고온 열교환기 소재로 이용될 가능성이 높은 Ni-Cr계 고온합금인 Inconel 617과 Hastelloy X의 표면처리에 따른 FLiNaK(LiF-NaF-KF) 용융염 하에서의 고온물성에 대한 연구를 수행하였다. Inconel 617과 Hastelloy X기판 상에 각각 PVD인 arc discharge 및 sputtering법에 의해 TiAlN 및 $Al_2O_3$ 박막을 코팅 하였다. 이러한 표면처리가 이들 합금의 FLiNaK 용융염 하 고온 안정성에 미치는 영향에 대해 연구하였다. 용융염 하 Ni-Cr계 고온합금의 부식 원리를 이해하기 위해, 용융염 수송 loop에 사용 중 파단된 Inconel 파이프에 대한 미세구조 분석을 수행하였다. 표면처리 된 합금들을 $600^{\circ}C$ 용융염 내에서 열처리 하였으며, 열처리 전후 시편들에 대해 상형성, 미세구조 등 고온 물성 변화를 측정하였다. 연구결과 코팅되지 않은 경우 보다 TiAlN 및 $Al_2O_3$ 박막이 코팅된 소재에서 보다 우수한 고온 안정성을 보여주었다.

Sol-gel 방법에 의한 $LaAlO_3$ 박막의 제조 (Preparation of $LaAlO_3$ thin Films by Sol-gel Method)

  • 김혜진;김병주;이희균;홍계원
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.85-90
    • /
    • 2007
  • Lanthanum aluminate($LaAlO_3$) film has been prepared on single crystal and metal substrates by dip coating method. Lanthanum acetate and aluminum were prepared via ligand exchange starting from lanthanum nitrate hexahydrate and aluminum nitrate hexahydrate in acetate glacial acetic acid solution after being refluxed. Coating solution was obtained by diluting the gel with methanol and 2-methoxyethanol to adjust the total cation concentration to 0.67 M. Precursor coated film was prepared by dip-coating with a speed of 25 mm/min on various substrates such as $LaAlO_3$ (001), MgO(001), $SrTiO_3$(001) single crystal, LMO/MgO/Ni-alloy. Thin films have been obtained by heat treating the precursor film at various temperatures from $600^{\circ}C{\sim}900^{\circ}C$ and various heating rate from $0.83^{\circ}C/min{\sim}1.25^{\circ}C/min$ under $Ar/O_2$ mixture containing 1000ppm oxygen. The films have been characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). XRD analysis for the prepared film showed that $LaAlO_3$ thin films with a preferred orientation of (100) plane parallel to substrate surface were obtained at $800^{\circ}C(1.11\;^{\circ}C/min)$ on LMO/MgO/Ni-alloy substrate, but the intensity decreased with the increase of heat treatment temperature.

  • PDF

가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용 (IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity)

  • 김재열;양동조;최철준;박상기;안연식;정계조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

아크 금속 용사 공법에 의해 코팅된 콘크리트의 전자기파 차폐 성능 확보를 위한 실험적 연구 (An Experimental Study to Secure Electromagnetic Pulse Shielding Performance of Concrete Coated by an Arc Metal Spraying Process)

  • 장종민;정화랑;이한승
    • 한국건축시공학회지
    • /
    • 제21권6호
    • /
    • pp.519-527
    • /
    • 2021
  • 본 연구에서는 기존의 전자기파 차폐 성능이 없는 콘크리트를 대상으로 아크 금속용사 공법을 적용하여 전자기파 차폐성능을 확보하고자 한다. 이를 위해 금속 코팅의 두께에 전기적 특성을 평가하기 위해서 8 종류의(Cu, CuAl, CuNi, CuZn, Al, Zn, ZnAl, AlMg) 금속들을 두께 100, 200 및 500㎛의 금속 코팅으로 제작하여 4pin-probe로 표면에서의 전기전도도를 측정하였고, KS C 0304에 의거하여 전자기파 차폐 성능 시험을 실시하였다. 금속 코팅 시험 결과를 토대로 전자기파 차폐를 위한 최적의 금속 코팅 두께 200㎛를 제안하였으며, 이를 300×300×100mm 콘크리트 시험체에 용사하여 전자기파 차폐 성능을 분석한 결과 목표 성능 1GHz에서 80dB의 전자기파 차폐 성능이 확보됨을 확인하였다. 하지만 부착 강도의 경우 최대 1.11MPa로 목표 성능 대비 74% 이하로 확인되어 추후 콘크리트 표면에 미세한 요철을 형성하여 부착 성능을 향상시키는 연구가 필요할 것으로 판단된다.