DOI QR코드

DOI QR Code

Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process

저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석

  • Kim, Jaeick (Kinetic Spray Coating Laboratory (NRL), Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Seungtae (Kinetic Spray Coating Laboratory (NRL), Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Changhee (Kinetic Spray Coating Laboratory (NRL), Division of Materials Science and Engineering, Hanyang University)
  • 김재익 (한양대학교 신소재공학과 저온 분사 코팅 연구실) ;
  • 이승태 (한양대학교 신소재공학과 저온 분사 코팅 연구실) ;
  • 이창희 (한양대학교 신소재공학과 저온 분사 코팅 연구실)
  • Received : 2015.12.08
  • Accepted : 2015.12.31
  • Published : 2015.12.31

Abstract

The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Keywords

References

  1. R. C. Dykhuizen, and M. F. Smith, J. Therm. Spray Technol., 7(2) (1998) 205. https://doi.org/10.1361/105996398770350945
  2. V. F. Kosarev, S. V. Klinkov, A. P. Alkhimov, A. N. Papyrin, J. Therm. Spray Technol., 12 (2) (2003) 265. https://doi.org/10.1361/105996303770348384
  3. A. P. Alkhimov, V. F. Kosarev, and S. V. Klinkov, J. Therm. Spray Technol., 10 (2) (2001) 375. https://doi.org/10.1361/105996301770349466
  4. M. Grujicic, C. L. Zhao, C. Tong, W. S. DeRosset, and D. Helfritch, Mater. Sci. Eng. A, 368 (2004) 222. https://doi.org/10.1016/j.msea.2003.10.312
  5. F. Gartner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Kocak, Surf. Coat. Technol., 200 (2006) 6770. https://doi.org/10.1016/j.surfcoat.2005.10.007
  6. P. Richer, M. Yandouzi, L. Beauvais, B. Jodoin, Surf. Coat. Technol., 204 (2010) 3962. https://doi.org/10.1016/j.surfcoat.2010.03.043
  7. R. Gr. Maev, V. Leshchynsky, J. Therm. Spray Technol., 15 (2) (2006) 198. https://doi.org/10.1361/105996306X108048
  8. E. Irissou, J-G. Legoux, A. N. Ryabinin, B. Jodoin, C. Moreau, J. Therm. Spray Technol., 17 (4) (2008) 495. https://doi.org/10.1007/s11666-008-9203-3
  9. H. Singh, T. S. Sidhum, S. B. S. Kalsi, Frattura ed Integrita Strutturale, 22 (2012) 69.
  10. T. Marrocco, D. McCartney, P. Shipway, A.J. Sturgeon, Thermal Spray 2006, (2006).
  11. W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.-G. Legoux, H. Fukanuma, S. Yue, J. Therm. Spray Technol., 22 (2-3) (2013) 413. https://doi.org/10.1007/s11666-012-9827-1
  12. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H, Kim, C. Lee, Acta Mater., 57 (2009) 5654. https://doi.org/10.1016/j.actamat.2009.07.061
  13. G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater., 56 (2008) 4858. https://doi.org/10.1016/j.actamat.2008.06.003
  14. H. Assadi, F. Gartner, T. Stoltenhoff, H. Kreye, Acta Mater., 51 (2003) 4379. https://doi.org/10.1016/S1359-6454(03)00274-X
  15. $ABAQUS^{TM}$ 6.7-2 user manual, Hibbitt, Karlsson & Sorensen, Inc. (2007)
  16. G. R. Johnson, and W. H. Cook, Proceedings of the 7th International Symposium on Ballistics, (1983) 541.
  17. T. Ozel, I. Llanos, J. Soriano, P.-J. Arrazola, Mach. Sci. Technol., 15 (2011) 21. https://doi.org/10.1080/10910344.2011.557950
  18. D. Y. Zhou, ASME J. Heat. Transfer, 117 (1995) 8. https://doi.org/10.1115/1.2822329
  19. G. S. Prakash, S. S. Reddy, S. K. Das, T. Sundararajan, K. N. Seetharamu, Num. Heat Transfer, 38 (2000), 513. https://doi.org/10.1080/104077800750020414
  20. J. Wu, H. Fang, S. Yoon, H. -J. Kim, C. Lee, Appl. Surf. Sci. 252 (2005) 1368. https://doi.org/10.1016/j.apsusc.2005.02.108
  21. S. Sampath, X. Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, A. Vaidya, Mater. Sci. Eng. A, 364 (2004) 216. https://doi.org/10.1016/j.msea.2003.08.023
  22. C-J. Li, and W-Y. Li, Surf. Coat. Technol., 167 (2003) 278. https://doi.org/10.1016/S0257-8972(02)00919-2
  23. M. Kobayashi, T. Matsui, Y. Murakami, Int. J. Fatigue, 20(5) (1998) 351. https://doi.org/10.1016/S0142-1123(98)00002-4
  24. G. Bae, J-I Jang, C. Lee, Acta Mater., 60 (2012) 3524. https://doi.org/10.1016/j.actamat.2012.03.001
  25. G. Bae, K. Kang, J-J Kim, C. Lee, Mater. Sci. Eng. A, 527 (2010) 6313. https://doi.org/10.1016/j.msea.2010.06.037

Cited by

  1. Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions vol.26, pp.7, 2017, https://doi.org/10.1007/s11666-017-0596-8