• Title/Summary/Keyword: INCONEL 718

Search Result 112, Processing Time 0.024 seconds

Mechanical Properties Evaluation of Gas Tungsten Arc Welding for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 Gas Tungsten Arc Welding 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Moon, Il-Yoon;Rhee, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.692-698
    • /
    • 2009
  • Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100$^{\circ}C$ was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100$^{\circ}C$ to a specific temperature below -100$^{\circ}C$. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.

Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process (저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석)

  • Kim, Jaeick;Lee, Seungtae;Lee, Changhee
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Mechanical Properties Evaluation of GTAW for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 GTAW 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Rhee, Byung-Ho;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.619-622
    • /
    • 2009
  • INCONEL 718합금은 상온, 고온 및 저온환경에서 기계적 특성이 아주 우수하다. 상온에서의 모재 강도는 약 900MPa이며, 열처리 후 시효경화처리에 의해 강도가 약 1300MPa까지 증가한다. 이러한 INCONEL 718합금의 기계적 특성은 시험결과에서도 유사한 값을 나타내었고, GTAW 용접부의 상온 기계적 특성도 모재보다 우수한 강도를 나타내었다. 또한 저온에서의 기계적 특성은 모든 시험조건에서 상온보다 높은 강도를 나타내었으며, 열처리 모재시편과 용접시편은 1400MPa에 달하는 고강도를 나타내었다. 이러한 결과를 바탕으로 INCONEL 718합금의 저온 기계적 특성이 우수한 것을 증명하였고, 용접성 또한 모재의 특성과 같이 상온 및 저온 특성이 우수한 것을 알 수 있었다. INCONEL 718 합금과 STS 316L의 이종접합의 경우에도 $-100^{\circ}C$환경의 인장강도가 상온보다 300MPa 이상 증가하는 것을 알 수 있었다. 따라서, INCONEL 718합금은 $100^{\circ}C$이하부터 일정온도까지는 기계적 특성이 계속 증가 할 것으로 사료되며, 극저온 고압 상태로 공급되는 산화제 배관 제작에 적합한 소재로 판단된다.

  • PDF

Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method (Ti-6Al-4V 합금 기지 위에 FGM 방식으로 적층제조 된 Inconel 718의 접합 특성 분석)

  • Park, Chan Woong;Park, Jin Woong;Jung, Ki Chae;Lee, Se-Hwan;Kim, Sung-Hoon;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.417-422
    • /
    • 2021
  • In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.

Machining Characteristics Evaluation of Super Heat-resistant Alloy(Inconel 718) According to Cutting Conditions in High Speed Ball End-milling (고속 볼엔드밀링에서 가공조건에 따른 초내열합금 (Inconel 718)의 가공특성 평가)

  • Kwon, Hae-Woong;Kim, Jeong-Suk;Kang, Ik-Soo;Kim, Ki-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Inconel 718 alloy has been applied to high temperature, high load and corrosion resistant environments due to its superior properties. However, This alloy is a difficult-to-cut nickel-based superalloy and the chipping or notch wear is mainly generated on the cutting edge of the tool. In this study, the machinability of Inconel 718 is investigated to improve tool life under various cutting conditions with TiCN-based coated ball-end mills. The cutting conditions can be suggested to improve both the tool life and machined surface quality in Inconel 718 high speed machining.

Localized Corrosion Behavior of Inconel 718 in a Chloride-Containing Aqueous Solution (염수 환경에서 Inconel 718의 국부 부식 거동)

  • Lee, Jun-Seob;Lee, Yejin;Kwon, Soon il;Shin, Jungho;Lee, Je-Hyun
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.361-366
    • /
    • 2021
  • Localized corrosion behavior of Ni-based Inconel 718 alloy was investigated by electrochemical anodic polarization techniques in NACE TM 0177 A solution of 5 wt% NaCl + 0.5 wt% acetic acid at room temperature. After the solution heat treated at 1080 ℃ for 2.5 h, Inconel 718 was age-hardened at 780 ℃ for 8 h. The microstructure of the alloy surface was investigated by optical microscopic or scanning electron microscopic technique. The austenitic phase with the presence of metal carbides was observed on the surface of Inconel 718. Metal-carbides such as Nb-Mo and Ti-carbide with diameters of approximately 10 and 3 ㎛, respectively, were formed in Inconel 718. Anodic polarization results revealed that localized corrosion was observed at the interface between austenitic phase of a substrate and metal carbides. Difference in electrochemical property between a metal carbide and an austenitic substrate could provide an initiation site for localized corrosion of Inconel 718 surface.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

A Study on Reusable Metal Component as Burnable Absorber Through Monte Carlo Depletion Analysis

  • Muth, Boravy;Alrawash, Saed;Park, Chang Je;Kim, Jong Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.481-496
    • /
    • 2020
  • After nuclear power plants are permanently shut down and decommissioned, the remaining irradiated metal components such as stainless steel, carbon steel, and Inconel can be used as neutron absorber. This study investigates the possibility of reusing these metal components as neutron absorber materials, that is burnable poison. The absorption cross section of the irradiated metals did not lose their chemical properties and performance even if they were irradiated over 40-50 years in the NPPs. To examine the absorption capability of the waste metals, the lattice calculations of WH 17×17 fuel assembly were analyzed. From the results, Inconel-718 significantly hold-down fuel assembly excess reactivity compared to stainless steel 304 and carbon steel because Inconel-718 contains a small amount of boron nuclide. From the results, a 20wt% impurity of boron in irradiated Inconel-718 enhances the excess reactivity suppression. The application of irradiated Inconel-718 as a burnable absorber for SMR core was investigated. The irradiated Inconel-718 impurity with 20wt% of boron content can maintain and suppress the whole core reactivity. We emphasize that the irradiated metal components can be used as burnable absorber materials to control the reactivity of commercial reactor power and small modular reactors.

Microstructure and Properties of TiC-Inconel 718 Metal Matrix Composites Fabricated by Liquid Pressing Infiltration Process (용융가압함침 공정으로 제조된 고체적률 TiC-Inconel 718 금속복합재료의 미세조직 및 특성)

  • Cho, Seungchan;Lee, Yeong-Hwan;Ko, Seongmin;Park, Hyeonjae;Lee, Donghyun;Shin, Sangmin;Jo, Ilguk;Lee, Sang-Bok;Lee, Sang-Kwan
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.158-162
    • /
    • 2019
  • Titanium carbide (TiC) reinforced Inconel 718 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructure and mechanical properties of the fabricated 55 vol% TiC-Inconel 718 composite are analyzed. The composite exhibits superior mechanical properties, such as hardness and compressive strength as compared with Inconel 718. It is believed that Mo and Nb, which are alloying elements in the matrix, diffuse and solidify into the TiC reinforcement, resulting in generation of core-rim structure with excellent interfacial properties.