• Title/Summary/Keyword: Ni-Mn

Search Result 1,413, Processing Time 0.151 seconds

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 다층박막에서 Mn 함유량에 의존하는 교환결합력과 열적안정성 (Exchange Coupling Field and Thermal Stability of Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 Multilayer Depending on Mn Content)

  • 김보경;이진용;김순섭;황도근;이상석;황재연;김미양;이장로
    • 한국자기학회지
    • /
    • 제13권5호
    • /
    • pp.187-192
    • /
    • 2003
  • IrMn에 Mn을 첨가시킨 N $i_{80}$F $e_{20}$/[I $r_{22}$M $n_{78}$-Mn] $Co_{75}$F $e_{25}$ 다층박막을 상온에서 이온빔 증착(ion beam deposition: IBD)법으로 제작하여 그 자기적 및 열적 특성을 연구하였다. Mn이 첨가된 NiFe/[IrMn-Mn]/CoFe다층박막은 Mn이 첨가되지 않은 순수 합금 IrMn 박막 위의 CoFe 고정층 보다 큰 교환결합력( $H_{ex}$)과 방해온도(blocking temperature: $T_{b}$)을 가지고 있었다. Mn이 첨가되지 않는 I $r_{22}$M $n_{78}$ 와 CoFe 사이의 $H_{ex}$는 상온에서 거의 없었으나, 25$0^{\circ}C$ 열처리 후 100 Oe로 나타났다. IrMn 내에서 76.8-78.1 vol% Mn일 때, $H_{ex}$$T_{b}$는 크게 향상되었고, Mn이 0.6 vol%씩 증가함에 따라 크게 줄어들었다. NiFe/[IrMn-Mn]/CoFe 다층박막 구조에서 [(111)CoFe, NiFe]/(111)IrM $n_3$인 x-선 회절 피크비 평균값은 75.5, 77.5, 79.3 vol% Mn일 때 각각 1.4, 0.8, 0.6였다. 특히, 열처리 전 77.5과 78.7 vol% Mn일 때, $H_{ex}$는 각각 259와 150 Oe였다. 77.5 vol% Mn인 경우, $H_{ex}$가 열처리 온도 35$0^{\circ}C$까지 475 Oe였으며, 450 $^{\circ}C$에서는 200 Oe로 크게 감소하였다. 따라서 합금형 반강자성체 IrMn에서 높은 $H_{ex}$$T_{b}$을 얻을 수 있는 최적의 Mn 함유량의 존재를 확인하였다.다.다. 확인하였다.다.하였다.다.

Electrodeposited Nano-flakes of Manganese Oxide on Macroporous Ni Electrode Exhibiting High Pseudocapacitance

  • Gobal, F.;Jafarzadeh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권4호
    • /
    • pp.178-184
    • /
    • 2012
  • A porous nickel (P-Ni) substrate was prepared by selective leaching of zinc from pressed pellets containing powders of Ni & Zn in 4 M NaOH solution. Anodic deposition of manganese oxide onto the porous Ni substrate ($MnO_x$/P-Ni) formed nano-flakes of manganese oxide layers as revealed in SEM studies. Pseudocapacitance of this oxide electrode was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CHP) in 2 M NaOH solution. The specific capacitance of the Mn oxide electrode was as high as 1515 F $g^{-1}$, which was ten times higher than Mn oxide deposited on a flat Ni-ribbon. 80% of capacity was retained after 200 charge/discharge cycles. The system showed no loss of activity in dry form over period of days. The impedance studies indicated highly conducting $MnO_x$/P-Ni substance and the obtained specific capacitance from impedance data showed good agreement with the charge/discharge measurements.

Annealing Temperature Dependence of Exchange Bias Effect in Short Time Annealed NiFe/NiMn Bilayer Thin Film by FMR Measurement

  • Yoo, Yong-Goo;Park, Nam-Seok;Min, Seong-Gi;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • 제10권4호
    • /
    • pp.133-136
    • /
    • 2005
  • The NiMn/NiFe bilayer structure which was short time annealed in order to induce unidirectional anisotropy were studied as a function of annealing temperature. The maximum exchange bias field of NiMn/NiFe bilayer was presented at $250^{\circ}C$ after short time annealing process with no external field. The appearance of exchange bias was due to phase transformation of NiMn layer. In plane angular dependence of a resonance field distribution which measured by FMR was analysed as a combined effect of unidirectional anisotropy and uniaxial anisotropy. The resonance field and the line width from FMR measurement were also analysed with annealing temperature.

IrMn 스핀밸브 박막소자의 폭 크기에 의존하는 자장감응도 (Magnetic Sensitivity Depending on Width of IrMn Spin Valve Film Device)

  • 최종구;이상석
    • 한국자기학회지
    • /
    • 제20권2호
    • /
    • pp.41-44
    • /
    • 2010
  • NiFe/Cu/NiFe/IrMn 스핀밸브 박막에 대해 Cu의 두께에 의존하는 자장감응도를 조사하였다. Ta(5 nm)/NiFe(8 nm)/Cu(3.5 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm) 다층박막 구조에 대해 측정한 Minor 자기저항 곡선에서 자기저항비, 자장감응도, 보자력, 층간상호교환결합력은 각각 1.46 %, 2.0 %/Oe, 2.6 Oe, 0.1 Oe 이었다. 광 리소그래피 공정으로 제작한 10가지 다른 폭 크기와 $4.45\;{\mu}m$의 길이를 갖는 GMR-SV 소자의 자장감응도는 폭 크기가 $10\;{\mu}m$에서 $1\;{\mu}m$까지 작아짐에 따라 0.3 %/Oe에서 0.06 %/Oe로 감소하였다.

Ni-Mn 전착층의 기계적 성질에 미치는 공정조건의 영향 (Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions)

  • 신지웅;양승기;황운석
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.102-106
    • /
    • 2014
  • Nickel electrodeposition from sulfamate bath has several benefits such as low internal stress, high current density and good ductility. In nickel deposited layers, sulfur induces high temperature embrittlement, as Ni-S compound has a low melting temperature. To overcome high temperature embrittlement problem, adding manganese is one of the good methods. Manganese makes Mn-S compound having a high melting temperature above $1500^{\circ}C$. In this work, the mechanical properties of Ni-Mn deposited layers were investigated by using various process variables such as concentration of Mn$(NH_2SO_3)_2$, current density, and bath temperature. As the Mn content of electrodeposited layers was increased, internal stress and hardness were increased. By increasing current density, internal stress increased, but hardness decreased. With increasing the bath temperature from 55 to $70^{\circ}C$, internal stress of Ni deposit layers decreased, but hardness didn't change by bath temperature. It was likely that eutectoid manganese led to lattice deformation, and the lattice deformation increased hardness and internal stress in Ni-Mn layers. Increasing current density and decreasing bath temperature would increase a mount of $H_2$ absorption, which was a cause for the rise of internal stress.

Surface-Modified Spinel LiNi0.5Mn1.5O4 for Li-Ion Batteries

  • Kim, Jongsoon;Kim, Hyungsub;Kang, Kisuk
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.21-35
    • /
    • 2018
  • Spinel $LiNi_{0.5}Mn_{1.5}O_4$ has received great attention as one of the most outstanding cathode materials for Li-ion batteries (LIBs) because of its high energy density resulting from the operating voltage of ~ 4.7 V (vs. $Li^+/Li$) based on the $Ni^{2+}/Ni^{4+}$ redox reaction. However, $LiNi_{0.5}Mn_{1.5}O_4$ is known to suffer from undesirable side reactions with the electrolyte at high voltage as well as Mn dissolution from the structure. These issues prevent the realization of the optimal electrochemical performance of $LiNi_{0.5}Mn_{1.5}O_4$. Extensive research has been conducted to overcome these issues. This review presents an overview of the various surface-modification methods available to improve the electrochemical properties of $LiNi_{0.5}Mn_{1.5}O_4$ and provides perspectives on further research aimed at the application of $LiNi_{0.5}Mn_{1.5}O_4$ as a cathode material in commercialized LIBs.

Ni/MH 2차 전지용 고용량 Ti계 수소저장합금의 설계에 관한 연구 (A Study on the Alloy Design of High Capacity Ti-Based Metal Hydride for Ni/MH Rechargeable Battery)

  • 이한호;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.19-28
    • /
    • 1996
  • Ti-Mn based hydrogen storage alloy were modified by substituting alloying elements such as Zr, V and Ni in order to design a high capacity MH electrode for Ni/MH rechargeable battery. When V was substituted in Ti-Mn binary system, the crystal structure was maintained as $Cl_4$ Laves phase at a composition of $Ti_{0.2}V_{0.4}Mn_{0.4}$ and $Ti_{0.4}V_{0.2}Mn_{0.4}$ and equilibrium pressure decreased below 1 atm without decreasing hydrogen storage capacity considerably. It was found that Ni should be included in Ti-V-Mn alloy in order to hydrogenate it electrochemically in KOH electrolyte. But substitution of Ni for Mn in Ti-V-Mn system caused the increase of equilibrium pressure above 1atm and decrease of hydrogen storage capacity. Zr was able to increase the reversible hydrogen storage capacity of Ti-V-Mn-Ni alloy without considerable change of hydrogenation properties. The electrochemical discharge capacity of Ti-Zr-V-Mn-Ni system were in the range of 350 - 464mAh/g and among them $Ti_{0.8}Zr_{0.2}V_{0.5}Mn_{0.5}Ni_{1.0}$ alloy had $Cl_4$ Laves single phase and very high electrochemical discharge capacity of 464mAh/g.

  • PDF