DOI QR코드

DOI QR Code

Surface-Modified Spinel LiNi0.5Mn1.5O4 for Li-Ion Batteries

  • Kim, Jongsoon (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kim, Hyungsub (Neutron Science Center, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Kisuk (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University)
  • Received : 2017.11.24
  • Accepted : 2018.01.04
  • Published : 2018.01.31

Abstract

Spinel $LiNi_{0.5}Mn_{1.5}O_4$ has received great attention as one of the most outstanding cathode materials for Li-ion batteries (LIBs) because of its high energy density resulting from the operating voltage of ~ 4.7 V (vs. $Li^+/Li$) based on the $Ni^{2+}/Ni^{4+}$ redox reaction. However, $LiNi_{0.5}Mn_{1.5}O_4$ is known to suffer from undesirable side reactions with the electrolyte at high voltage as well as Mn dissolution from the structure. These issues prevent the realization of the optimal electrochemical performance of $LiNi_{0.5}Mn_{1.5}O_4$. Extensive research has been conducted to overcome these issues. This review presents an overview of the various surface-modification methods available to improve the electrochemical properties of $LiNi_{0.5}Mn_{1.5}O_4$ and provides perspectives on further research aimed at the application of $LiNi_{0.5}Mn_{1.5}O_4$ as a cathode material in commercialized LIBs.

Keywords

References

  1. J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414 [6861] 359-67 (2001). https://doi.org/10.1038/35104644
  2. M. Armand and J. M. Tarascon, "Building Better Batteries," Nature, 451 [7179] 652-57 (2008). https://doi.org/10.1038/451652a
  3. K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries," Science, 311 [5763] 977-80 (2006). https://doi.org/10.1126/science.1122152
  4. Y. Oumellal, A. Rougier, G. A. Nazri, J. M. Tarascon, and L. Aymard, "Metal Hydrides for Lithium-Ion Batteries," Nat. Mater., 7 [11] 916-21 (2008). https://doi.org/10.1038/nmat2288
  5. B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices," Science, 334 [6058] 928-35 (2011). https://doi.org/10.1126/science.1212741
  6. S. Y. Chung, J. T. Bloking, and Y. M. Chiang, "Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes," Nat. Mater., 1 [2] 123-28 (2002). https://doi.org/10.1038/nmat732
  7. C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, "Lithium Deintercalation in $LiFePO_4$ Nanoparticles via a Domino-Cascade Model," Nat. Mater., 7 [8] 665-71 (2008). https://doi.org/10.1038/nmat2230
  8. P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon, and C. Masquelier, "Room-Temperature Single-Phase Li Insertion/Extraction in Nanoscale $Li_xFePO_4$," Nat. Mater., 7 [9] 741-47 (2008). https://doi.org/10.1038/nmat2245
  9. S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada, "Experimental Visualization of Lithium Diffusion in $Li_xFePO_4$," Nat. Mater., 7 [9] 707-11 (2008). https://doi.org/10.1038/nmat2251
  10. N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, and J. M. Tarascon, "A 3.6 V Lithium-Based Fluorosulphate Insertion Positive Electrode for Lithium-Ion Batteries," Nat. Mater., 9 [1] 68-74 (2010). https://doi.org/10.1038/nmat2590
  11. B. Nykvist and M. Nilsson, "Rapidly Falling Costs of Battery Packs for Electric Vehicles," Nat. Clim. Change, 5 [4] 329-32 (2015). https://doi.org/10.1038/nclimate2564
  12. M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry," Science, 192 [4244] 1126-27 (1976). https://doi.org/10.1126/science.192.4244.1126
  13. A. Yamada, Y. Kudo, and K. Y. Liu, "Reaction Mechanism of the Olivine-Type $Li_x(Mn_{0.6}Fe_{0.4})PO_4$ (0 ${\leq}$ x ${\leq}$ 1)," J. Electrochem. Soc., 148 [7] A747-54 (2001). https://doi.org/10.1149/1.1375167
  14. D. Morgan, A. Van der Ven, and G. Ceder, "Li Conductivity in $Li_xMPO_4$ (M = Mn, Fe, Co, Ni) Olivine Materials," Electrochem. Solid State Lett., 7 [2] A30-2 (2004). https://doi.org/10.1149/1.1633511
  15. K. Kang and G. Ceder, "Factors that Affect Li Mobility in Layered Lithium Transition Metal Oxides," Phys. Rev. B, 74 [9] 094105 (2006). https://doi.org/10.1103/PhysRevB.74.094105
  16. A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, and T. Kamiyama, "Electrochemical, Magnetic, and Structural Investigation of the $Li_x(Mn_yFe_{1-y})PO_4$ Olivine Phases," Chem. Mater., 18 [3] 804-13 (2006). https://doi.org/10.1021/cm051861f
  17. S.-W. Kim, J. Kim, H. Gwon, and K. Kang, "Phase Stability Study of $Li_{1-x}MnPO_4$ (0 < x < 1) Cathode for Li Rechargeable Battery," J. Electrochem. Soc., 156 [8] A635-38 (2009). https://doi.org/10.1149/1.3138705
  18. G. Kobayashi, A. Yamada, S. Nishimura, R. Kanno, Y. Kobayashi, S. Seki, Y. Ohno, and H. Miyashiro, "Shift of Redox Potential and Kinetics in $Li_x(Mn_yFe_{1-y})PO_4$," J. Power Sources, 189 397-401 (2009). https://doi.org/10.1016/j.jpowsour.2008.07.085
  19. Y. Zhang, C. S. Sun, and Z. Zhou, "Sol-Gel Preparation and Electrochemical Performances of $LiFe_{1/3}Mn_{1/3}Co_{1/3}PO_4/C$ Composites with Core-Shell Nanostructure," Electrochem. Commun., 11 [6] 1183-86 (2009). https://doi.org/10.1016/j.elecom.2009.03.044
  20. W. Wang, Z. Chen, J. Zhang, C. Dai, J. Li, and D. Ji, "A Comparative Structural and Electrochemical Study of Monoclinic $Li_3V_2(PO_4)_3/C$ and Rhombohedral $Li_{2.5}Na_{0.5}V_{(2-2x/3)}Ni_x(PO_4)_3/C$," Electrochim. Acta, 103 259-65 (2013). https://doi.org/10.1016/j.electacta.2013.04.066
  21. J. Kim, S. W. Kim, H. Gwon, W. S. Yoon, and K. Kang, "Comparative Study of $Li(Li_{1/3}Ti_{5/3})O_4$ and $Li(Ni_{1/2-x}Li_{2x/3}Ti_{x/3})Ti_{3/2}O_4$ (x = 1/3) Anodes for Li Rechargeable Batteries," Electrochim. Acta, 54 [24] 5914-18 (2009). https://doi.org/10.1016/j.electacta.2009.05.058
  22. Y. J. Lee, H. Yi, W. J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder, and A. M. Belcher, "Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes," Science, 324 [5930] 1051-55 (2009). https://doi.org/10.1126/science.1171541
  23. H. Kim, S. Lee, Y. U. Park, H. Kim, J. Kim, S. Jeon, and K. Kang, "Neutron and X-ray Diffraction Study of Pyrophosphate-Based $Li_{2-x}MP_2O_7$ (M = Fe, Co) for Lithium Rechargeable Battery Electrodes," Chem. Mater., 23 [17] 3930-37 (2010). https://doi.org/10.1021/cm201305z
  24. J. Kim, D. H. Seo, S. W. Kim, Y. U. Park, and K. Kang, "Mn Based Olivine Electrode Material with High Power and Energy," Chem. Commun., 46 [8] 1305-7 (2010). https://doi.org/10.1039/b922133f
  25. Y.-U. Park, J. Kim, H. Gwon, D. H. Seo, S. W. Kim, and K. Kang, "Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization," Chem. Mater., 22 2573 (2010). https://doi.org/10.1021/cm903616d
  26. J. Kim, H. Kim, I. Park, Y. U. Park, J. K. Yoo, K. Y. Park, S. Lee, and K. Kang, "$LiFePO_4$ with an Alluaudite Crystal Structure for Lithium Ion Batteries," Energy Environ. Sci., 6 [3] 830-34 (2013). https://doi.org/10.1039/c3ee24393a
  27. J. Kim, J.-K. Yoo, Y. S. Jung, and K. Kang, "$Li_3V_2(PO_4)_3/Conducting$ Polymer as a High Power 4 V-Class Lithium Battery Electrode," Adv. Energy Mater., 3 [8] 1004-7 (2013). https://doi.org/10.1002/aenm.201300205
  28. M. M. Thackeray, "Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries," J. Electrochem. Soc., 142 [8] 2558-63 (1995). https://doi.org/10.1149/1.2050053
  29. J. Reed and G. Ceder, "Charge, Potential, and Phase Stability of Layered $Li(Ni_{0.5}Mn_{0.5})O_2$," Electrochem. Solid State Lett., 5 [7] A145-A48 (2002). https://doi.org/10.1149/1.1480135
  30. K. Kang, C. H. Chen, B. J. Hwang, and G. Ceder, "Synthesis, Electrochemical Properties, and Phase Stability of $Li_2NiO_2$ with the Immm Structure," Chem. Mater., 16 [13] 2685-90 (2004). https://doi.org/10.1021/cm049922h
  31. M. Jiang, B. Key, Y. S. Meng, and C. P. Grey, "Electrochemical and Structural Study of the Layered, "Li-Excess" Lithium-Ion Battery Electrode Material $Li[Li_{1/9}Ni_{1/3}Mn_{5/9}]O_2$," Chem. Mater., 21 [13] 2733-45 (2009). https://doi.org/10.1021/cm900279u
  32. B. J. Hwang, Y. W. Tsai, D. Carlier, and G. Ceder, "A Combined Computational/Experimental Study on $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$," Chem. Mater., 15 [19] 3676-82 (2003). https://doi.org/10.1021/cm030299v
  33. S. Jouanneau and J. R. Dahn, "Influence of LiF Additions on $LiNi_xCo_{1-2x}Mn_xO_2$ Materials-Sintering, Structure, and Lithium Insertion Properties," J. Electrochem. Soc., 151 [10] A1749-54 (2004). https://doi.org/10.1149/1.1793712
  34. Y. K. Fan, J. M. Wang, Z. Tang, W. C. He, and J. Q. Zhang, "Effects of the Nanostructured $SiO_2$ Coating on the Performance of $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Materials for High-Voltage Li-Ion Batteries," Electrochim. Acta, 52 [11] 3870-75 (2007). https://doi.org/10.1016/j.electacta.2006.10.063
  35. H. Gwon, S. W. Kim, Y. U. Park, J. Hong, G. Ceder, S. Jeon, and K. Kang, "Ion-Exchange Mechanism of Layered Transition-Metal Oxides: Case Study of $LiNi_{0.5}Mn_{0.5}O_2$," Inorg. Chem., 53 [15] 8083-87 (2014). https://doi.org/10.1021/ic501069x
  36. F. Yang, Q. G. Zhang, X. H. Hu, T. Y. Peng, and J. Q. Liu, "Preparation of Li-Rich Layered-Layered Type $xLi_2MnO_3{\cdot}(1-x)LiMnO_2$ Nanorods and its Electrochemical Performance as Cathode Material for Li-Ion Battery," J. Power Sources, 353 323-32 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.002
  37. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries," J. Electrochem. Soc., 144 [4] 1188-94 (1997). https://doi.org/10.1149/1.1837571
  38. A. Yamada, Y. Kudo, and K. Y. Liu, "Phase Diagram of $Li_x(Mn_yFe_{1-y})PO_4$ (0 ${\leq}$ x, y ${\leq}$ 1)," J. Electrochem. Soc., 148 [10] A1153-58 (2001). https://doi.org/10.1149/1.1401083
  39. A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, and Y. Nishi, "Olivine-Type Cathodes: Achievements and Problems," J. Power Sources, 119-121 232-38 (2003). https://doi.org/10.1016/S0378-7753(03)00239-8
  40. D. Shanmukaraj and R. Murugan, "Synthesis and Characterization of $LiNi_yCo_{1-y}PO_4$ (y = 0 - 1) Cathode Materials for Lithium Secondary Batteries," Ionics, 10 [1-2] 88-92 (2004). https://doi.org/10.1007/BF02410312
  41. T. Maxisch and G. Ceder, "Elastic Properties of Olivine $Li_xFePO_4$ from First Principles," Phys. Rev. B, 73 [17] 4 (2006).
  42. B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, and L. F. Nazar, "A Multifunctional 3.5 V Iron-Based Phosphate Cathode for Rechargeable Batteries," Nat. Mater., 6 [10] 749-53 (2007). https://doi.org/10.1038/nmat2007
  43. M. R. Roberts, G. Vitins, and J. R. Owen, "High-Throughput Studies of $Li_{1-x}Mg_{x/2}FePO_4$ and $LiFe_{1-y}Mg_yPO_4$ and the Effect of Carbon Coating," J. Power Sources, 179 [2] 754-62 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.034
  44. D. H. Seo, H. Gwon, S. W. Kim, J. Kim, and K. Kang, "Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study," Chem. Mater., 22 [2] 518-23 (2010). https://doi.org/10.1021/cm903138s
  45. J. Kim, Y. U. Park, D. H. Seo, J. Kim, S. W. Kim, and K. Kang, "Mg and Fe Co-Doped Mn Based Olivine Cathode Material for High Power Capability," J. Electrochem. Soc., 158 [3] A250-54 (2011). https://doi.org/10.1149/1.3524260
  46. J. Kim, K. Y. Park, I. Park, J. K. Yoo, J. Hong, and K. Kang, "Thermal Stability of Fe-Mn Binary Olivine Cathodes for Li Rechargeable Batteries," J. Mater. Chem., 22 [24] 11964-70 (2012). https://doi.org/10.1039/c2jm30733b
  47. K. Y. Park, J. Hong, J. Kim, Y. U. Park, H. Kim, D. H. Seo, S. W. Kim, J. W. Choi, and K. Kang, "Factors that Affect the Phase Behavior of Multi-Component Olivine ($LiFe_xMn_yCo_{1-x-y}PO_4$; 0 < x, y < 1) in Lithium Rechargeable Batteries: One-Phase Reaction vs. Two-Phase Reaction," J. Electrochem. Soc., 160 [3] A444-48 (2013). https://doi.org/10.1149/2.036303jes
  48. J. C. Kim, X. Li, B. Kang, and G. Ceder, "High-Rate Performance of a Mixed Olivine Cathode with Off-Stoichiometric Composition," Chem. Commun., 51 [68] 13279-82 (2015). https://doi.org/10.1039/C5CC04434K
  49. K. Amine, H. Yasuda, and M. Yamachi, "Olivine $LiCoPO_4$ as 4.8 V Electrode Material for Lithium Batteries," Electrochem. Solid State Lett., 3 [4] 178-79 (2000). https://doi.org/10.1149/1.1390994
  50. S. Nishimura, M. Nakamura, R. Natsui, and A. Yamada, "New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery," J. Am. Chem. Soc., 132 [39] 13596-97 (2010). https://doi.org/10.1021/ja106297a
  51. N. Furuta, S. Nishimura, P. Barpanda, and A. Yamada, "$Fe^{3+}/Fe^{2+}$ Redox Couple Approaching 4 V in $Li_{2-x}(Fe_{1-y}Mn_y)P_2O_7$ Pyrophosphate Cathodes," Chem. Mater., 24 [6] 1055-61 (2012). https://doi.org/10.1021/cm2032465
  52. J. Kim, B. Lee, H. Kim, H. Kim, and K. Kang, "Redesign of $Li_2MP_2O_7$ (M = Fe or Mn) by Tuning the Li Diffusion in Rechargeable Battery Electrodes," Chem. Mater., 28 [19] 6894-99 (2016). https://doi.org/10.1021/acs.chemmater.6b02198
  53. P. Barpanda, J. N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, and J. M. Tarascon, "Structural, Transport, and Electrochemical Investigation of Novel $AMSO_4F$ (A = Na, Li; M = Fe, Co, Ni, Mn) Metal Fluorosulphates Prepared Using Low Temperature Synthesis Routes," Inorg. Chem., 49 [16] 7401-13 (2010). https://doi.org/10.1021/ic100583f
  54. P. Barpanda, N. Recham, J. N. Chotard, K. Djellab, W. Walker, M. Armand, and J. M. Tarascon, "Structure and Electrochemical Properties of Novel Mixed $Li(Fe_{1-x}M_x)SO_4F$ (M = Co, Ni, Mn) Phases Fabricated by Low Temperature Ionothermal Synthesis," J. Mater. Chem., 20 [9] 1659-68 (2010). https://doi.org/10.1039/b922063a
  55. R. Tripathi, T. N. Ramesh, B. L. Ellis, and L. F. Nazar, "Scalable Synthesis of Tavorite $LiFeSO_4F$ and $NaFeSO_4F$ Cathode Materials," Angew. Chem. Int. Ed., 49 [46] 8738-42 (2010). https://doi.org/10.1002/anie.201003743
  56. M. Ati, B. C. Melot, G. Rousse, J. N. Chotard, P. Barpanda, and J. M. Tarascon, "Structural and Electrochemical Diversity in $LiFe_{1-{\delta}}Zn_{{\delta}}SO_4F$ Solid Solution: A Fe-Based 3.9 V Positive-Electrode Material," Angew. Chem. Int. Ed., 50 [45] 10574-77 (2011). https://doi.org/10.1002/anie.201104648
  57. P. Barpanda, M. Ati, B. C. Melot, G. Rousse, J. N. Chotard, M. L. Doublet, M. T. Sougrati, S. A. Corr, J. C. Jumas, and J. M. Tarascon, "A 3.90 V Iron-Based Fluorosulphate Material for Lithium-Ion Batteries Crystallizing in the Triplite Structure," Nat. Mater., 10 [10] 772-79 (2011). https://doi.org/10.1038/nmat3093
  58. Y. Jeon, H. K. Noh, and H. K. Song, "A Lithium-Ion Battery Using Partially Lithiated Graphite Anode and Amphiredox $LiMn_2O_4$ Cathode," Sci. Rep., 7 [1] 14879 (2017). https://doi.org/10.1038/s41598-017-14741-x
  59. R. Kun, P. Schlee, E. Pal, M. Busse, and T. Gesing, "Role of the Precursor Chemistry on the Phase Composition and Electrochemical Performance of Thin-Film $LiMn_2O_4$ Li-Ion Battery Cathodes Prepared by Spray Pyrolysis," J. Alloys Compd., 726 664-74 (2017). https://doi.org/10.1016/j.jallcom.2017.08.039
  60. L. B. Ben, H. L. Yu, B. Chen, Y. Y. Chen, Y. Gong, X. N. Yang, L. Gu, and X. J. Huang, "Unusual Spinel-to-Layered Transformation in $LiMn_2O_4$ Cathode Explained by Electrochemical and Thermal Stability Investigation," ACS Appl. Mater. Interfaces, 9 [40] 35463-75 (2017). https://doi.org/10.1021/acsami.7b11303
  61. K. S. Reddy, B. Gangaja, S. V. Nair, and D. Santhanagopalan, "$Mn^{4+}$ Rich Surface Enabled Elevated Temperature and Full-Cell Cycling Performance of $LiMn_2O_4$ Cathode Material," Electrochim. Acta, 250 359-67 (2017). https://doi.org/10.1016/j.electacta.2017.08.054
  62. C. Y. Tang, K. Leung, R. T. Haasch, and S. J. Dillon, "$LiMn_2O_4$ Surface Chemistry Evolution during Cycling Revealed by in Situ Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy," ACS Appl. Mater. Interfaces, 9 [39] 33968-78 (2017). https://doi.org/10.1021/acsami.7b10442
  63. M. Y. Zhao, Z. Y. Ji, Y. G. Zhang, Z. Y. Guo, Y. Y. Zhao, J. Liu, and J. S. Yuan, "Study on Lithium Extraction from Brines Based on $LiMn_2O_4/Li_{1-x}Mn_2O_4$ by Electrochemical Method," Electrochim. Acta, 252 350-61 (2017). https://doi.org/10.1016/j.electacta.2017.08.178
  64. D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, and Y. Cui, "Spinel $LiMn_2O_4$ Nanorods as Lithium Ion Battery Cathodes," Nano Lett., 8 [11] 3948-52 (2008). https://doi.org/10.1021/nl8024328
  65. H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, and D. K. Kim, "Ultrathin Spinel $LiMn_2O_4$ Nanowires as High Power Cathode Materials for Li-Ion Batteries," Nano Lett., 10 [10] 3852-56 (2010). https://doi.org/10.1021/nl101047f
  66. W. Tang, Y. Y. Hou, F. X. Wang, L. L. Liu, Y. P. Wu, and K. Zhu, "$LiMn_2O_4$ Nanotube as Cathode Material of Second-Level Charge Capability for Aqueous Rechargeable Batteries," Nano Lett., 13 [5] 2036-40 (2013). https://doi.org/10.1021/nl400199r
  67. M. J. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, "High Performance $LiMn_2O_4$ Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries," Nano Lett., 14 [2] 993-99 (2014). https://doi.org/10.1021/nl404430e
  68. X. J. Yang, T. Yang, S. S. Liang, X. Wu, and H. P. Zhang, "Modification of $LiNi_{0.5}Mn_{1.5}O_4$ High Potential Cathode from the Inner Lattice to the Outer Surface with $Cr^{3+}$-Doping and $Li^+$-Conductor Coating," J. Mater. Chem. A, 2 [27] 10359-64 (2014). https://doi.org/10.1039/C4TA00974F
  69. Y. Liu, Z. P. Lu, C. F. Deng, J. J. Ding, Y. Xu, X. J. Lu, and G. Yang, "A Novel $LiCoPO_4$-Coated Core-Shell Structure for Spinel $LiNi_{0.5}Mn_{1.5}O_4$ as a High-Performance Cathode Material for Lithium-Ion Batteries," J. Mater. Chem. A, 5 [3] 996-1004 (2017). https://doi.org/10.1039/C6TA08659D
  70. W. H. Jang, M. C. Kim, S. N. Lee, J. Y. Ahn, V. Aravindan, and Y. S. Lee, "Enhanced Elevated Temperature Performance of $LiFePO_4$ Modified Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode," J. Alloys Compd., 612 51-5 (2014). https://doi.org/10.1016/j.jallcom.2014.05.149
  71. B. W. Xiao, J. Liu, Q. Sun, B. Q. Wang, M. N. Banis, D. Zhao, Z. Q. Wang, R. Y. Li, X. Y. Cui, T. K. Sham, and X. L. Sun, "Unravelling the Role of Electrochemically Active $FePO_4$ Coating by Atomic Layer Deposition for Increased High-Voltage Stability of $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material," Adv. Sci., 2 [5] 1500022 (2015). https://doi.org/10.1002/advs.201500022
  72. T. F. Yi, Y. M. Li, X. Y. Li, J. J. Pan, Q. Zhang, and Y. R. Zhu, "Enhanced Electrochemical Property of $FePO_4$-Coated $LiNi_{0.5}Mn_{1.5}O_4$ as Cathode Materials for Li-Ion Battery," Sci. Bull., 62 [14] 1004-10 (2017). https://doi.org/10.1016/j.scib.2017.07.003
  73. Y. L. Deng, J. R. Mou, H. L. Wu, N. Jiang, Q. J. Zheng, K. H. Lam, C. G. Xu, and D. M. Lin, "A Superior $Li_2SiO_3$-Composited $LiNi_{0.5}Mn_{1.5}O_4$ Cathode for High-Voltage and High-Performance Lithium-Ion Batteries," Electrochim. Acta, 235 19-31 (2017).
  74. J. C. Deng, Y. L. Xu, L. Li, T. Y. Feng, and L. Li, "Microporous $LiAlSiO_4$ with High Ionic Conductivity Working as a Coating Material and Water Adsorbent for $LiNi_{0.5}Mn_{1.5}O_4$ Cathode," J. Mater. Chem. A, 4 [17] 6561-68 (2016). https://doi.org/10.1039/C6TA02237E
  75. J. H. Cho, J. H. Park, M. H. Lee, H. K. Song, and S. Y. Lee, "A Polymer Electrolyte-Skinned Active Material Strategy toward High-Voltage Lithium Ion Batteries: a Polyimide-Coated $LiNi_{0.5}Mn_{1.5}O_4$ Spinel Cathode Material Case," Energy Environ. Sci., 5 [5] 7124-31 (2012). https://doi.org/10.1039/c2ee03389e
  76. W. K. Pang, H. F. Lin, V. K. Peterson, C. Z. Lu, C. E. Liu, S. C. Liao, and J. M. Chen, "Enhanced Rate-Capability and Cycling-Stability of 5 V $SiO_2$- and Polyimide-Coated Cation Ordered $LiNi_{0.5}Mn_{1.5}O_4$ Lithium-Ion Battery Positive Electrodes," J. Phy. Chem. C, 121 [7] 3680-89 (2017). https://doi.org/10.1021/acs.jpcc.6b10743
  77. Q. T. Zhang, J. T. Mei, X. M. Wang, F. L. Tang, W. F. Fan, and W. J. Lu, "High Performance Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material by Lithium Polyacrylate Coating for Lithium Ion Battery," Electrochim. Acta, 143 265-71 (2014). https://doi.org/10.1016/j.electacta.2014.08.030
  78. X. W. Gao, Y. F. Deng, D. Wexler, G. H. Chen, S. L. Chou, H. K. Liu, Z. C. Shi, and J. Z. Wang, "Improving the Electrochemical Performance of the $LiNi_{0.5}Mn_{1.5}O_4$ Spinel by Polypyrrole Coating as a Cathode Material for the Lithium-Ion Battery," J. Mater. Chem. A, 3 [1] 404-11 (2015). https://doi.org/10.1039/C4TA04018J
  79. Z. L. Liu, P. Hu, J. Ma, B. S. Qin, Z. Y. Zhang, C. B. Mou, Y. Yao, and G. L. Cui, "Conformal Poly(Ethyl Alpha-Cyanoacrylate) Nano-Coating for Improving the Interface Stability of $LiNi_{0.5}Mn_{1.5}O_4$," Electrochim. Acta, 236 221-27 (2017). https://doi.org/10.1016/j.electacta.2017.03.168
  80. T. Y. Yang, N. Q. Zhang, Y. Lang, and K. N. Sun, "Enhanced Rate Performance of Carbon-Coated $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material for Lithium Ion Batteries," Electrochim. Acta, 56 [11] 4058-64 (2011). https://doi.org/10.1016/j.electacta.2010.12.109
  81. X. Fang, M. Y. Ge, J. P. Rong, and C. W. Zhou, "Graphene-Oxide-Coated $LiNi_{0.5}Mn_{1.5}O_4$ as High Voltage Cathode for Lithium Ion Batteries with High Energy Density and Long Cycle Life," J. Mater. Chem. A, 1 [12] 4083-88 (2013). https://doi.org/10.1039/c3ta01534c
  82. H. L. Wang, Z. Q. Shi, J. W. Li, S. Yang, R. B. Ren, J. Y. Cui, J. L. Xiao, and B. Zhang, "Direct Carbon Coating at High Temperature on $LiNi_{0.5}Mn_{1.5}O_4$ Cathode: Unexpected Influence on Crystal Structure and Electrochemical Performances," J. Power Sources, 288 206-13 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.137
  83. T. Hwang, J. K. Lee, J. Mun, and W. Choi, "Surface Modified Carbon Nanotube Coating on High-Voltage $LiNi_{0.5}Mn_{1.5}O_4$ Cathodes for Lithium Ion Batteries," J. Power Sources, 322 40-8 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.118
  84. Y. K. Sun, K. J. Hong, J. Prakash, and K. Amine, "Electrochemical Performance of Nano-Sized ZnO-Coated $LiNi_{0.5}Mn_{1.5}O_4$ Spinel as 5 V Materials at Elevated Temperatures," Electrochem. Commun., 4 [4] 344-48 (2002). https://doi.org/10.1016/S1388-2481(02)00277-1
  85. J. C. Arrebola, A. Caballero, L. Hernan, and J. Morales, "Re-Examining the Effect of ZnO on Nanosized 5 V $LiNi_{0.5}Mn_{1.5}O_4$ Spinel: An Effective Procedure for Enhancing its Rate Capability at Room and High Temperatures," J. Power Sources, 195 [13] 4278-84 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.004
  86. H. D. Sun, B. B. Xia, W. W. Liu, G. Q. Fang, J. J. Wu, H. B. Wang, R. X. Zhang, S. Kaneko, J. W. Zheng, H. Y. Wang, and D. C. Li, "Significant Improvement in Performances of $LiNi_{0.5}Mn_{1.5}O_4$ through Surface Modification with High Ordered Al-Doped ZnO Electro-Conductive Layer," Appl. Surf. Sci., 331 309-14 (2015).
  87. Y. Lee, J. Mun, D. W. Kim, J. K. Lee, and W. Choi, "Surface Modification of $LiNi_{0.5}Mn_{1.5}O_4$ Cathodes with $ZnAl_2O_4$ by a Sol-Gel Method for Lithium Ion Batteries," Electrochim. Acta, 115 326-31 (2014). https://doi.org/10.1016/j.electacta.2013.10.127
  88. Y. Wang, Q. Peng, G. Yang, Z. Yang, L. C. Zhang, H. Long, Y. H. Huang, and P. X. Lu, "High-Stability 5 V Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Sputtered Thin Film Electrodes by Modifying with Aluminum Oxide," Electrochim. Acta, 136 450-56 (2014). https://doi.org/10.1016/j.electacta.2014.04.184
  89. J. W. Kim, D. H. Kim, D. Y. Oh, H. Lee, J. H. Kim, J. H. Lee, and Y. S. Jung, "Surface Chemistry of $LiNi_{0.5}Mn_{1.5}O_4$ Particles Coated by $Al_2O_3$ Using Atomic Layer Deposition for Lithium-Ion Batteries," J. Power Sources, 274 1254-62 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.207
  90. H. M. Cho, M. V. Chen, A. C. MacRae, and Y. S. Meng, "Effect of Surface Modification on Nano-Structured $LiNi_{0.5}Mn_{1.5}O_4$ Spinel Materials," ACS Appl. Mater. Interfaces, 7 [30] 16231-39 (2015). https://doi.org/10.1021/acsami.5b01392
  91. S. Tao, F. J. Kong, C. Q. Wu, X. Z. Su, T. Xiang, S. M. Chen, H. H. Hou, L. Zhang, Y. Fang, Z. C. Wang, W. S. Chu, B. Qian, and L. Song, "Nanoscale $TiO_2$ Membrane Coating Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material for Advanced Lithium-Ion Batteries," J. Alloys Compd., 705 413-19 (2017). https://doi.org/10.1016/j.jallcom.2017.02.139
  92. H. F. Deng, P. Nie, H. F. Luo, Y. Zhang, J. Wang, and X. G. Zhang, "Highly Enhanced Lithium Storage Capability of $LiNi_{0.5}Mn_{1.5}O_4$ by Coating with $Li_2TiO_3$ for Li-Ion Batteries," J. Mater. Chem. A, 2 [43] 18256-62 (2014). https://doi.org/10.1039/C4TA03802A
  93. G. Alva, C. Kim, T. H. Yi, J. B. Cook, L. P. Xu, G. M. Nolis, and J. Cabana, "Surface Chemistry Consequences of Mg-Based Coatings on $LiNi_{0.5}Mn_{1.5}O_4$ Electrode Materials upon Operation at High Voltage," J. Phy. Chem. C, 118 [20] 10596-605 (2014). https://doi.org/10.1021/jp5003148
  94. G. Wang, W. C. Wen, S. H. Chen, R. Z. Yu, X. Y. Wang, and X. K. Yang, "Improving the Electrochemical Performances of Spherical $LiNi_{0.5}Mn_{1.5}O_4$ by $Fe_2O_3$ Surface Coating for Lithium-Ion Batteries," Electrochim. Acta, 212 791-99 (2016). https://doi.org/10.1016/j.electacta.2016.07.025
  95. X. L. Li, W. Guo, Y. F. Liu, W. X. He, and Z. H. Xiao, "Spinel $LiNi_{0.5}Mn_{1.5}O_4$ as Superior Electrode Materials for Lithium-Ion Batteries: Ionic Liquid Assisted Synthesis and the Effect of CuO Coating," Electrochim. Acta, 116 278-83 (2014). https://doi.org/10.1016/j.electacta.2013.11.055
  96. D. Hong, Y. F. Guo, H. X. Wang, J. G. Zhou, and H. T. Fang, "Mechanism for Improving the Cycle Performance of $LiNi_{0.5}Mn_{1.5}O_4$ by $RuO_2$ Surface Modification and Increasing Discharge Cut-Off Potentials," J. Mater. Chem. A, 3 [30] 15457-65 (2015). https://doi.org/10.1039/C5TA02255J
  97. S. H. Jung, D. H. Kim, P. Bruner, H. Lee, H. J. Hah, S. K. Kim, and Y. S. Jung, "Extremely Conductive $RuO_2$-Coated $LiNi_{0.5}Mn_{1.5}O_4$ for Lithium-Ion Batteries," Electrochim. Acta, 232 236-43 (2017). https://doi.org/10.1016/j.electacta.2017.02.109
  98. W. K. Shin, Y. S. Lee, and D. W. Kim, "Study on the Cycling Performance of $LiNi_{0.5}Mn_{1.5}O_4$ Electrodes Modified by Reactive $SiO_2$ Nanoparticles," J. Mater. Chem. A, 2 [19] 6863-69 (2014). https://doi.org/10.1039/C3TA14558A
  99. F. Ma, F. S. Geng, A. B. Yuan, and J. Q. Xu, "Facile Synthesis and Characterization of a $SnO_2$-Modified $LiNi_{0.5}Mn_{1.5}O_4$ High-Voltage Cathode Material with Superior Electrochemical Performance for Lithium Ion Batteries," Phys. Chem. Chem. Phys., 19 [15] 9983-91 (2017). https://doi.org/10.1039/C7CP00943G
  100. W. C. Wen, X. K. Yang, X. Y. Wang, and L. G. H. Shu, "Improved Electrochemical Performance of the Spherical $LiNi_{0.5}Mn_{1.5}O_4$ Particles Modified by Nano-$Y_2O_3$ Coating," J. Solid State Electrochem., 19 [4] 1235-46 (2015). https://doi.org/10.1007/s10008-015-2743-9
  101. J. R. Mou, H. L. Wu, Y. L. Deng, L. Zhou, Q. J. Zheng, J. Liao, and D. M. Lin, "$BiFeO_3$-Coated Spinel $LiNi_{0.5}Mn_{1.5}O_4$ with Improved Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries," J. Solid State Electrochem., 21 [10] 2849-58 (2017). https://doi.org/10.1007/s10008-017-3608-1
  102. Z. Qiao, O. Sha, Z. Y. Tang, J. Yan, S. L. Wang, H. B. Liu, Q. Xu, and Y. J. Su, "Surface Modification of $LiNi_{0.5}Mn_{1.5}O_4$ by $LiCoO_2/Co_3O_4$ Composite for Lithium-Ion Batteries," Mater. Lett., 87 176-79 (2012). https://doi.org/10.1016/j.matlet.2012.07.110
  103. J. Chong, S. D. Xun, X. Y. Song, G. Liu, and V. S. Battaglia, "Surface Stabilized $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Materials with High-Rate Capability and Long Cycle Life for Lithium Ion Batteries," Nano Energy, 2 [2] 283-93 (2013). https://doi.org/10.1016/j.nanoen.2012.09.013
  104. H. Konishi, K. Suzuki, S. Taminato, K. Kim, Y. M. Zheng, S. Kim, J. Lim, M. Hirayama, J. Y. Son, Y. T. Cui, and R. Kanno, "Effect of Surface $Li_3PO_4$ Coating on $LiNi_{0.5}Mn_{1.5}O_4$ Epitaxial Thin Film Electrodes Synthesized by Pulsed Laser Deposition," J. Power Sources, 269 293-98 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.052
  105. J. Chong, S. D. Xun, J. P. Zhang, X. Y. Song, H. M. Xie, V. Battaglia, and R. S. Wang, "$Li_3PO_4$-Coated $LiNi_{0.5}Mn_{1.5}O_4$: A Stable High-Voltage Cathode Material for Lithium-Ion Batteries," Chem. Eur. J., 20 [24] 7479-85 (2014). https://doi.org/10.1002/chem.201304744
  106. J. Chong, J. P. Zhang, H. M. Xie, X. Y. Song, G. Liu, V. Battaglia, S. D. Xun, and R. S. Wang, "High Performance $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material with a Bi-Functional Coating for Lithium Ion Batteries," Rsc Adv., 6 [23] 19245-51 (2016). https://doi.org/10.1039/C6RA00119J
  107. H. X. Zhong, J. R. He, and L. Z. Zhang, "Better Cycle Stability and Rate Capability of High-Voltage $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Using Water Soluble Binder," Mater. Res. Bull., 93 194-200 (2017).
  108. G. Q. Liu, J. Y. Zhang, X. H. Zhang, Y. L. Du, K. Zhang, G. C. Li, H. Yu, C. W. Li, Z. Y. Li, Q. Sun, and L. Wen, "Study on Oxygen Deficiency in Spinel $LiNi_{0.5}Mn_{1.5}O_4$ and its Fe and Cr-Doped Compounds," J. Alloys Compd., 725 580-86 (2017). https://doi.org/10.1016/j.jallcom.2017.07.202
  109. D. S. Lu, L. B. Yuan, Z. X. Chen, R. H. Zeng, and Y. P. Cai, "Co-Precipitation Preparation of $LiNi_{0.5}Mn_{1.5}O_4$ Hollow Hierarchical Microspheres with Superior Electrochemical Performance for 5 V Li-Ion Batteries," J. Alloys Compd., 730 509-15 (2018). https://doi.org/10.1016/j.jallcom.2017.09.306
  110. X. J. Luo, "Improvement of the Electrochemical Performance of Spinel $LiNi_{0.5}Mn_{1.5}O_4$ by Stabilization of the Electrode/Electrolyte Interfaces with the Electrolyte Additive," J. Alloys Compd., 730 23-30 (2018). https://doi.org/10.1016/j.jallcom.2017.09.285
  111. J. Li, S. F. Li, S. J. Xu, S. Huang, and J. X. Zhu, "Synthesis and Electrochemical Properties of $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Materials with $Cr^{3+}$ and $F^-$ Composite Doping for Lithium-Ion Batteries," Nanoscale Res. Lett., 12 141 (2017). https://doi.org/10.1186/s11671-017-1899-x
  112. Y. Luo, H. Y. Li, T. L. Lu, Y. X. Zhang, S. S. Mao, Z. Liu, W. Wen, J. Y. Xie, and L. Q. Yan, "Fluorine Gradient-Doped $LiNi_{0.5}Mn_{1.5}O_4$ Spinel with Improved High Voltage Stability for Li-Ion Batteries," Electrochim. Acta, 238 237-45 (2017). https://doi.org/10.1016/j.electacta.2017.04.043
  113. R. Amin and I. Belharouak, "Part-II: Exchange Current Density and Ionic Diffusivity Studies on the Ordered and Disordered Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode," J. Power Sources, 348 318-25 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.070
  114. R. Amin and I. Belharouk, "Part I: Electronic and Ionic Transport Properties of the Ordered and Disordered $LiNi_{0.5}Mn_{1.5}O_4$ Spinel Cathode," J. Power Sources, 348 311-17 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.071
  115. H. J. Wen, J. J. Zhang, J. C. Chai, J. Ma, L. P. Yue, T. T. Dong, X. Zang, Z. H. Liu, B. T. Zhang, and G. L. Cui, "Sustainable and Superior Heat-Resistant Alginate Nonwoven Separator of $LiNi_{0.5}Mn_{1.5}O_4$/Li Batteries Operated at $55^{\circ}C$," ACS Appl. Mater. Interfaces, 9 [4] 3694-701 (2017). https://doi.org/10.1021/acsami.6b14352
  116. B. Aktekin, R. Younesi, W. Zipprich, C. Tengstedt, D. Brandell, and K. Edstrom, "The Effect of the Fluoroethylene Carbonate Additive in $LiNi_{0.5}Mn_{1.5}O_4-Li_4Ti_5O_{12}$ Lithium-Ion Cells," J. Electrochem. Soc., 164 [4] A942-48 (2017). https://doi.org/10.1149/2.0231706jes
  117. T. Tanabe, T. Gunji, Y. Honma, K. Miyamoto, T. Tsuda, Y. Mochizuki, S. Kaneko, S. Ugawa, H. Lee, T. Ohsaka, and F. Matsumoto, "Preparation of Water-Resistant Surface Coated High-Voltage $LiNi_{0.5}Mn_{1.5}O_4$ Cathode and Its Cathode Performance to Apply a Water-Based Hybrid Polymer Binder to Li-Ion Batteries," Electrochim. Acta, 224 429-38 (2017). https://doi.org/10.1016/j.electacta.2016.12.064

Cited by

  1. Composite Cathode Material Using Spark Plasma Sintering for Bulk-Type Hybrid Solid-State Batteries vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.1019
  2. Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries vol.9, pp.3, 2018, https://doi.org/10.5229/jecst.2018.9.3.176
  3. Continuous Composition Spread and Electrochemical Studies of Low Cobalt Content Li(Ni,Mn,Co)O2 Cathode Materials vol.9, pp.6, 2018, https://doi.org/10.3390/coatings9060366
  4. The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries vol.13, pp.10, 2018, https://doi.org/10.1021/acsnano.9b05635
  5. Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries vol.58, pp.1, 2021, https://doi.org/10.1007/s43207-020-00098-x