DOI QR코드

DOI QR Code

Electrodeposited Nano-flakes of Manganese Oxide on Macroporous Ni Electrode Exhibiting High Pseudocapacitance

  • Gobal, F. (Department of Chemistry, Sharif University of Technology) ;
  • Jafarzadeh, S. (Department of Chemistry, Sharif University of Technology)
  • Received : 2012.12.20
  • Accepted : 2012.12.30
  • Published : 2012.12.31

Abstract

A porous nickel (P-Ni) substrate was prepared by selective leaching of zinc from pressed pellets containing powders of Ni & Zn in 4 M NaOH solution. Anodic deposition of manganese oxide onto the porous Ni substrate ($MnO_x$/P-Ni) formed nano-flakes of manganese oxide layers as revealed in SEM studies. Pseudocapacitance of this oxide electrode was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CHP) in 2 M NaOH solution. The specific capacitance of the Mn oxide electrode was as high as 1515 F $g^{-1}$, which was ten times higher than Mn oxide deposited on a flat Ni-ribbon. 80% of capacity was retained after 200 charge/discharge cycles. The system showed no loss of activity in dry form over period of days. The impedance studies indicated highly conducting $MnO_x$/P-Ni substance and the obtained specific capacitance from impedance data showed good agreement with the charge/discharge measurements.

Keywords

References

  1. R. Kotz and M Carlen, Electrochim. Acta, 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  2. H. Y. Lee and J. B. Goodenough, J. Solid State Chem., 144, 220 (1999). https://doi.org/10.1006/jssc.1998.8128
  3. S. C. Pang, M. A. Anderson, and T. W. Chapman, J. Electrochem. Soc., 147, 444 (2000). https://doi.org/10.1149/1.1393216
  4. M. Toupin, T. Brousse and D. B'elanger, Chem. Mater., 16, 3184-319 (2004). https://doi.org/10.1021/cm049649j
  5. J. K. Chang, M. T. Lee and W. T. Tsai, J. Power Sources, 166, 590 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.036
  6. H. Y. Lee, S. W. Kim and H. Y. Lee, Electrochem. Solid State Lett., 4, A19 (2001). https://doi.org/10.1149/1.1346536
  7. M. Toupin, T. Brousse and D. Belanger, Chem. Mater., 14, 3946 (2002). https://doi.org/10.1021/cm020408q
  8. Y. U. Jeong and A. Manthiram, J. Electrochem. Soc., 149, A1419 (2002). https://doi.org/10.1149/1.1511188
  9. C. C. Hu and T. W. Tsou, J. Power Sources, 115, 179 (2003). https://doi.org/10.1016/S0378-7753(02)00647-X
  10. H. Kim and B. N. Popov, J. Electrochem. Soc., 150, D56 (2003). https://doi.org/10.1149/1.1541675
  11. J. K. Chang and W. T. Tsai, J. Electrochem. Soc., 150, A1333 (2003). https://doi.org/10.1149/1.1605744
  12. V. Subramanian, H. Zhu, R. Vajtai, P. M. Ajayan and B. Wei, J. Phys. Chem. B, 109, 20207 (2005). https://doi.org/10.1021/jp0543330
  13. W. C. West, N. V. Myung, J. F. Whitacre and B. V. Ratnakumar, J. Power Sources, 126, 203 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.020
  14. X. Wang, X. Wang, W. Huang, P. J. Sebastian and S. Gamboa, J. Power Sources, 140, 211 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.033
  15. C. L. Xu, S. J. Bao, L. B. Kong, H. Li and H. L. Li, J. Solid State Chem., 179, 1351 (2006). https://doi.org/10.1016/j.jssc.2006.01.058
  16. Y. T. Wu and C. C. Hu, J. Electrochem. Soc., 151, A2060 (2004). https://doi.org/10.1149/1.1815151
  17. Y. K. Zhou, B. L. He, F. B. Zhang and H. L. Li, J. Solid State Electrochem., 8, 482 (2004). https://doi.org/10.1007/s10008-003-0468-7
  18. E. Raymundo-Piñero, V. Khomenko, E. Frackowiak and F. Beguin, J. Electrochem. Soc., 152, A229 (2005). https://doi.org/10.1149/1.1834913
  19. C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin and T. Y. Tseng, J. Electrochem. Soc., 152, A716 (2005). https://doi.org/10.1149/1.1870793
  20. L. Sun, C. L. Chien and P. C. Searson, Chem. Mater., 16, 3125 (2004). https://doi.org/10.1021/cm0497881
  21. K. H. Chang and C. C. Hu, J. Electrochem. Soc., 151, A958 (2004). https://doi.org/10.1149/1.1755591
  22. V. Gupta, T. Kusahara, H. Toyama, S. Gupta and N. Miura, Electrochem. Commun., 9, 2315 (2007). https://doi.org/10.1016/j.elecom.2007.06.041
  23. F. Fusalba, R. Gouerec, D. Villers and D. Belanger, J. Electrochem. Soc., 148, A1 (2001). https://doi.org/10.1149/1.1339036
  24. J. H. Park and O. O. Park, J. Power Sources, 111, 185 (2002). https://doi.org/10.1016/S0378-7753(02)00304-X
  25. V. Subramanian, H. W. Zhu and B. Q. Wei, Electrochem. Commun., 8, 827 (2006). https://doi.org/10.1016/j.elecom.2006.02.027
  26. C. M. Wu, C. Y. Fan, I. W. Sun, W. T. Tsai and J. K. Chang, J. Power Sources, 196, 7828 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.083
  27. S. Chou, F. Y. Cheng and J. Chen, J. Power Sources, 162, 727 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.033
  28. Z. Lu, Z. Chang, W. Zhu and X. Sun, Chem. Commun., 47, 9651 (2011). https://doi.org/10.1039/c1cc13796d
  29. Y. Zhang, J. Li, F. Kang, F. Gao and X. Wang, Int J Hydrogen Energy, 37, 860 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.034
  30. C J. Xu, B. H. Li, H. D. Du, F. Y. Kang and Y. Q. Zeng, J. Power Sources, 180, 664 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.029
  31. J. Yan, T. Wei, J. Cheng, Z. J. Fan and M. L. Zhang, Mater. Res. Bull., 45, 210 (2010). https://doi.org/10.1016/j.materresbull.2009.09.016