DOI QR코드

DOI QR Code

A.c. Impedance Measurement of CP-Ti in 0.1 M NaOH Solution

  • Received : 2012.12.23
  • Accepted : 2012.12.30
  • Published : 2012.12.31

Abstract

A.c. impedances of mechanically polished CP-Ti specimens were measured at open-circuit potential (OCP) with immersion time and under applied anodic potentials between -0.2 and 1 $V_{Ag/AgCl}$ in 0.1 M NaOH solution. Capacitances of native oxide films ($C_{ox,na}$) grown naturally and capacitances of anodic oxide films ($C_{ox,an}$) formed under applied anodic potentials were obtained to examine the growth of native and anodic oxide films in 0.1 M NaOH solution and how to use $C_{ox,na}$ for the surface area measurement of Ti specimen. $1/C_{ox,na}$ and $1/C_{ox,an}$ appeared to be linearly proportional to OCP and applied potential ($E_{app}$), with proportional constants of 0.086 and 0.051 $uF^{-1}\;V^{-1}$, respectively. The $C_{ox,na}$ also appeared to be linearly proportional to geometric surface area of the mechanically polished CP-Ti fixture specimen, with proportional constants of 11.3 and $8.5{\mu}F\;cm^{-2}$ at -0.45 $V_{Ag/AgCl}$ and -0.25 $V_{Ag/AgCl}$ of OCPs, respectively, in 0.1 M NaOH solution. This linear relationship between $C_{ox,na}$ and surface area is suggested to be applicable for the measurement of real surface area of Ti specimen.

Keywords

References

  1. A. Aladjem, J of Mat. Sci., 8, 188 (1973).
  2. M. Aziz-Kerrzo, K. G. Conroy, A. M. Fenelon, S. T. Farrell and C. B. Breslin, Biomaterials, 22, 1531 (2001). https://doi.org/10.1016/S0142-9612(00)00309-4
  3. S. Kumar, T. S. N. S. Narayanan, S. G. S. Raman, S. K. Seshadri, Tribology International, 43, 1245 (2010). https://doi.org/10.1016/j.triboint.2009.12.007
  4. I. A. Ammar, I. Kamal, Electrochimica Acta, 16, 1539 (1971). https://doi.org/10.1016/0013-4686(71)80024-5
  5. M. Kozlowski, W. H. Smyrl, Lj. Atanasoska, R. Atanasoski, Electrochimica Acta, 34, 1763 (1989). https://doi.org/10.1016/0013-4686(89)85062-5
  6. J. Lausma, B. Kasemo, H. Mattsson and H. Odelius, Applied Surface Science, 45, 189 (1990). https://doi.org/10.1016/0169-4332(90)90002-H
  7. A. R. Piggott, H. Leckie and L. L. Shreir, Corrosion Science, 5, 165 (1965). https://doi.org/10.1016/S0010-938X(65)80017-8
  8. S. Piazza, G. L. O. Biundo, M. C. Romano, C. Sunseri, and F. Di Quarto, Corrosion Science, 40, 1087 (1998). https://doi.org/10.1016/S0010-938X(98)00009-2
  9. Y.-T. Sul, C. B. Johansson, Y. Jeong and T. Albrektsson, Medical Engineering & Physics, 23, 329 (2001). https://doi.org/10.1016/S1350-4533(01)00050-9
  10. S. Moon, C. Jeong, E. Byon and Y. Jeong, ECS Transactions, 1, 151 (2005).
  11. A. M. Schmidt, D. S. Azambuja and E. M. A. Martini, Corrosion Science, 48, 2901 (2006). https://doi.org/10.1016/j.corsci.2005.10.013
  12. T. Ohtsuka and N. Nomura, Corrosion Science, 39, 1253 (1997). https://doi.org/10.1016/S0010-938X(97)00025-5
  13. S. K. Poznyak, A. D. Lisenkov, M. G. S. Ferreira, A. I. Kulak and M. L. Zheludkevich, Electrochimica Acta, 76, 453 (2012). https://doi.org/10.1016/j.electacta.2012.05.064
  14. N. T. C. Oliveira, S. R. Biaggio, S. Piazza, C. Sunseri, and F. Di Quarto, Electrochimica Acta, 49, 4563 (2004). https://doi.org/10.1016/j.electacta.2004.04.042
  15. T. Ohtsuka and T. Otsuki, Corrosion Science, 39, 951 (1998).
  16. H.-H. Huanga and T.-H. Lee, Dental Materials, 21, 749 (2005). https://doi.org/10.1016/j.dental.2005.01.009
  17. J. Marsh and D. Gorse, Electrochimica Acta, 43, 659 (1998). https://doi.org/10.1016/S0013-4686(97)00210-7
  18. J. E. G. Gonzlez and J. C. Mirza-Rosca, Journal of Electroanalytical Chemistry, 471, 109 (1999). https://doi.org/10.1016/S0022-0728(99)00260-0
  19. Cl_audia E. B. Marino and Lucia Helena Mascaro, Journal of Electroanalytical Chemistry, 568, 115 (2004). https://doi.org/10.1016/j.jelechem.2004.01.011
  20. S. Moon, M. Kwon and J. Kim (manuscript in preparation).