• Title/Summary/Keyword: Next Generation Sequence

Search Result 173, Processing Time 0.028 seconds

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.

Whole genome sequence of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology

  • Ayesha, Wisal;Asad Ullah;Waheed Anwar;Carlos M. Morel;Syed Shah Hassan
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.34.1-34.10
    • /
    • 2023
  • Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.

Current Status of Cattle Genome Sequencing and Analysis using Next Generation Sequencing (차세대유전체해독 기법을 이용한 소 유전체 해독 연구현황)

  • Choi, Jung-Woo;Chai, Han-Ha;Yu, Dayeong;Lee, Kyung-Tai;Cho, Yong-Min;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Thanks to recent advances in next-generation sequencing (NGS) technology, diverse livestock species have been dissected at the genome-wide sequence level. As for cattle, there are currently four Korean indigenous breeds registered with the Domestic Animal Diversity Information System of the Food and Agricultural Organization of the United Nations: Hanwoo, Chikso, Heugu, and Jeju Heugu. These native genetic resources were recently whole-genome resequenced using various NGS technologies, providing enormous single nucleotide polymorphism information across the genomes. The NGS application further provided biological such that Korean native cattle are genetically distant from some cattle breeds of European origins. In addition, the NGS technology was successfully applied to detect structural variations, particularly copy number variations that were usually difficult to identify at the genome-wide level with reasonable accuracy. Despite the success, those recent studies also showed an inherent limitation in sequencing only a representative individual of each breed. To elucidate the biological implications of the sequenced data, further confirmatory studies should be followed by sequencing or validating the population of each breed. Because NGS sequencing prices have consistently dropped, various population genomic theories can now be applied to the sequencing data obtained from the population of each breed of interest. There are still few such population studies available for the Korean native cattle breeds, but this situation will soon be improved with the recent initiative for NGS sequencing of diverse native livestock resources, including the Korean native cattle breeds.

Development of SNP marker set for marker-assisted backcrossing (MABC) in cultivating tomato varieties

  • Park, GiRim;Jang, Hyun A;Jo, Sung-Hwan;Park, Younghoon;Oh, Sang-Keun;Nam, Moon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.385-400
    • /
    • 2018
  • Marker-assisted backcrossing (MABC) is useful for selecting offspring with a highly recovered genetic background for a recurrent parent at early generation unlike rice and other field crops. Molecular marker sets applicable to practical MABC are scarce in vegetable crops including tomatoes. In this study, we used the National Center for Biotechnology Information- short read archive (NCBI-SRA) database that provided the whole genome sequences of 234 tomato accessions and selected 27,680 tag-single nucleotide polymorphisms (tag-SNPs) that can identify haplotypes in the tomato genome. From this SNP dataset, a total of 143 tag-SNPs that have a high polymorphism information content (PIC) value (> 0.3) and are physically evenly distributed on each chromosome were selected as a MABC marker set. This marker set was tested for its polymorphism in each pairwise cross combination constructed with 124 of the 234 tomato accessions, and a relatively high number of SNP markers polymorphic for the cross combination was observed. The reliability of the MABC SNP set was assessed by converting 18 SNPs into Luna probe-based high-resolution melting (HRM) markers and genotyping nine tomato accessions. The results show that the SNP information and HRM marker genotype matched in 98.6% of the experiment data points, indicating that our sequence analysis pipeline for SNP mining worked successfully. The tag-SNP set for the MABC developed in this study can be useful for not only a practical backcrossing program but also for cultivar identification and F1 seed purity test in tomatoes.

Identification of Plasmid-Free Chlamydia muridarum Organisms Using a Pgp3 Detection-Based Immunofluorescence Assay

  • Chen, Chaoqun;Zhong, Guangming;Ren, Lin;Lu, Chunxue;Li, Zhongyu;Wu, Yimou
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1621-1628
    • /
    • 2015
  • Chlamydia possesses a conserved 7.5 kb plasmid that is known to play an important role in chlamydial pathogenesis, since some chlamydial organisms lacking the plasmid are attenuated. The chlamydial transformation system developed recently required the use of plasmid-free organisms. Thus, the generation and identification of plasmid-free organisms represent a key step in understanding chlamydial pathogenic mechanisms. A tricolor immunofluorescence assay for simultaneously detecting the plasmid-encoded Pgp3 and whole organisms plus DNA staining was used to screen C. muridarum organisms selected with novobiocin. PCR was used to detect the plasmid genes. Next-generation sequencing was then used to sequence the genomes of plasmid-free C. muridarum candidates and the parental C. muridarum Nigg strain. We generated five independent clones of plasmid-free C. muridarum organisms by using a combination of novobiocin treatment and screening plaque-purified clones with anti-Pgp3 antibody. The clones were confirmed to lack plasmid genes by PCR analysis. No GlgA protein or glycogen accumulation was detected in cells infected with the plasmid-free clones. More importantly, whole-genome sequencing characterization of the plasmid-free C. muridarum organism and the parental C. muridarum Nigg strain revealed no additional mutations other than loss of the plasmid in the plasmid-free C. muridarum organism. Thus, the Pgp3-based immunofluorescence assay has allowed us to identify authentic plasmid-free organisms that are useful for further investigating chlamydial pathogenic mechanisms.

Microbial Forensics: Comparison of MLVA Results According to NGS Methods, and Forensic DNA Analysis Using MLVA (미생물법의학: 차세대염기서열분석 방법에 따른 MLVA 결과 비교 및 이를 활용한 DNA 감식)

  • Hyeongseok Yun;Seungho Lee;Seunghyun Lim;Daesang Lee;Sehun Gu;Jungeun Kim;Juhwan Jeong;Seongjoo Kim;Gyeunghaeng Hur;Donghyun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Microbial forensics is a scientific discipline for analyzing evidence related to biological crimes by identifying the origin of microorganisms. Multiple locus variable number tandem repeat analysis(MLVA) is one of the microbiological analysis methods used to specify subtypes within a species based on the number of tandem repeat in the genome, and advances in next generation sequencing(NGS) technology have enabled in silico anlysis of full-length whole genome sequences. In this paper, we analyzed unknown samples provided by Robert Koch Institute(RKI) through The United Nations Secretary-General's Mechanism(UNSGM)'s external quality assessment exercise(EQAE) project, which we officially participated in 2023. We confirmed that the 3 unknown samples were B. anthracis through nucleic acid isolation and genetic sequence analysis studies. MLVA results on 32 loci of B. anthracis were analysed by using genome sequences obtained from NGS(NextSeq and MinION) and Sanger sequencing. The MLVA typing using short-reads based NGS platform(NextSeq) showed a high probability of causing assembly error when a size of the tandem repeats was grater than 200 bp, while long-reads based NGS platform(MinION) showed higher accuracy than NextSeq, although insertion and deletion was observed. We also showed hybrid assembly can correct most indel error caused by MinION. Based on the MLVA results, genetic identification was performed compared to the 2,975 published MLVA databases of B. anthracis, and MLVA results of 10 strains were identical with 3 unkonwn samples. As a result of whole genome alignment of the 10 strains and 3 unknown samples, all samples were identified as B. anthracis strain A4564 which is associated with injectional anthrax isolates in heroin users.

Diagnosis and Sequence Analysis of Japanese yam mosaic virus from Yam (Dioscorea opposita) (마(Dioscorea opposita)에 발생한 Japanese yam mosaic virus 진단 및 염기서열 분석)

  • Lee, Joong-Hwan;Son, Chang-Gi;Kwon, Joong-Bae;Nam, Hyo-Hun;Kim, Yeong-Tae;Kim, Mi Kyeong;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.289-292
    • /
    • 2016
  • We surveyed the occurrence of Japanese yam mosaic virus (JYMV) on Yam in Gyeongsangbukdo pronvince from 2013 to 2015. The symptoms of JYMV were yellow stripes and chlorosis in yam leaves and the infection rate was ranged from 33.6% to 40.8%. We determined nucleotide sequence encoding the polyprotein of JYMV isolate BRI from yam leaves using next-generation sequencing (NGS) method. The partial nucleotide portion (7,736 nucleotides) of the genomic RNA of the JYMV isolate BRI has been sequenced (accession No. KU309315). The region sequenced includes a single open reading frame (ORF) encoding a polyprotein composed of 2,497 amino acids containing the coat protein (CP) and 3' untranslated region (UTR). The genomic organization of this isolate shows almost the same to that of other members of JYMV. The JYMV isolate BRI showed 77% to 79% nucleotide identity with the Japanese and Chinese strains and isolates. This is the first report of the genome nucleotide sequence of JYMV from Dioscorea opposita in Korea.

Development of PCR-based markers specific to Solanum brevicaule by using the complete chloroplast genome sequences of Solanum species (엽록체 전장유전체 비교를 통한 PCR 기반의 Solanum brevicaule 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Solanum brevicaule is one of the tuber-bearing wild Solanum species. Because of its resistance to several important pathogens infecting potatoes during cultivation, it can be used for potato breeding. However, the fact that S. brevicaule used in this study has an EBN value of two causes the sexual reproduction barriers between the species and cultivated potatoes. In this study, specific markers for discriminating S. brevicaule from other Solanum species were developed on the basis of the results of sequence alignments with the whole chloroplast genomes of S. brevicaule and seven other Solanum species. The chloroplast genome of S. brevicaule was completed by next-generation sequencing technology described in other recent studies. The total sequence length of the chloroplast genome of S. brevicaule is 155,531 bp. Its structure and gene composition are similar to those of other Solanum species. Phylogenetic analysis revealed that S. brevicaule was closely grouped with other Solanum species. BLASTN search showed that its genome sequence had 99.99% and 99.89% identity with those of S. spegazzinii (MH021562) and S. kurtzianum (MH021495), respectively. Sequence alignment identified 27 SNPs that were specific to S. brevicaule. Thus, three PCR-based CAPS markers specific to S. brevicaule were developed on the basis of these SNPs. This study will facilitate in further studies on evolutionary and breeding aspects in Solanum species.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.

Current Status and Prospect of Wheat Functional Genomics using Next Generation Sequencing (차세대 염기서열분석을 통한 밀 기능유전체 연구의 현황과 전망)

  • Choi, Changhyun;Yoon, Young-Mi;Son, Jae-Han;Cho, Seong-Woo;Kang, Chon-Sik
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.364-377
    • /
    • 2018
  • Hexaploid wheat (common wheat/bread wheat) is one of the most important cereal crops in the world and a model for research of an allopolyploid plant with a large, highly repetitive genome. In the heritability of agronomic traits, variation in gene presence/absence plays an important role. However, there have been relatively few studies on the variation in gene presence/absence in crop species, including common wheat. Recently, a reference genome sequence of common wheat has been fully annotated and published. In addition, advanced next-generation sequencing (NGS) technology provides high quality genome sequences with continually decreasing NGS prices, thereby dawning full-scale wheat functional genomic studies in other crops as well as common wheat, in spite of their large and complex genomes. In this review, we provide information about the available tools and methodologies for wheat functional genomics research supported by NGS technology. The use of the NGS and functional genomics technology is expected to be a powerful strategy to select elite lines for a number of germplasms.