• Title/Summary/Keyword: Newton iterative method

Search Result 124, Processing Time 0.025 seconds

Anti-slosh effect of a horizontal porous baffle in a swaying/rolling rectangular tank: Analytical and experimental approaches

  • George, Arun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.833-847
    • /
    • 2021
  • The horizontal porous baffle and its effect as an anti-slosh device have been investigated intensively in a swaying and rolling rectangular tank. To accurately assess the level at which porous baffles reduce liquid sloshing, the Matched Eigenfunction Expansion Method (MEEM) has been utilized as an analytical tool. The velocity potentials in the horizontal baffle-covered fluid region are expressed by the sum of the homogeneous and particular solutions to avoid solving the complex dispersion equation. By applying an equivalent linearized quadratic loss model, the nonlinear algebraic equation is derived and solved by implementing the Newton-Raphson iterative scheme. To prove the validity of the present theoretical model, a series of experiments have been conducted with different centered horizontal porous baffles with varying porosities and submerged depths in a swaying and rolling rectangular tank. Reasonably good agreements are obtained regarding the analytical solutions and the experiment's findings. The influence of porosity, submerged depth, and length of a centered horizontal porous baffle on anti-slosh performance have been analyzed, especially at resonance modes. The developed predictive tool can potentially provide guidelines for optimal design of the horizontal porous baffle.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

Strength Prediction on Composite Laminates Including Material Nonlinearity and Continuum Damage Mechanics (재료 비선형과 연속체 손상역학을 고려한 복합 적층판의 강도 예측)

  • Park, Kook-Jin;Kang, Hee-Jin;Shin, Sangjoon;Choi, Ik-Hyun;Kim, Minki;Kim, Seung-Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.927-936
    • /
    • 2014
  • This paper presents development and verification of the progressive failure analysis upon the composite laminates. Strength and stiffness of the fiber-reinforced composite are analyzed by property degradation approach with emphasis on the material nonlinearity and continuum damage mechanics (CDM). Longitudinal and transverse tensile modes derived from Hashin's failure criterion are used to predict the thresholds for damage initiation and growth. The modified Newton-Raphson iterative procedure is implemented for determining nonlinear elastic and viscoelastic constitutive relations. Laminar properties of the composite are obtained by experiments. Prediction on the un-notched tensile (UNT) specimen is performed under the laminate level. Stress-strain curves and strength results are compared with the experimental measurement. It is concluded that the present nonlinear CDM approach is capable of predicting the strength and stiffness more accurately than the corresponding linear CDM one does.

A Study on the Secondary Optimization Analysis based on the Result of Primary Structure Analysis for the Die Thickness (금형두께에 대한 1차 구조해석 결과를 기반으로 한 2차 최적화 해석에 관한 연구)

  • Lee, Jong-Bae;Kim, Sang-Hyun;Woo, Chang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3448-3454
    • /
    • 2014
  • Generally existing structure analysis was applied to elastic analysis basically in practice. Considering the nonlinear material and the nonlinear geometric to be a more precise analysis, for this reason, The necessity for a structual analysis have been constantly required. Therefore, after optimization is performed, designed a simple model which is applied the principle of nonlinear in this study, a structural analysis of existing experienced users, have a aims at presenting theory and a method in order to perform anyone the analysis easily. In this study, the proposed model applied to die ribs, Regarding the shear load, less strain and stress was generated but strength was sufficient. The initial strain and stress was reconfigured to fit the size and shape, A hyperstudy in conjunction with Abaqus with nonlinear structural analysis, revealed an acceptable maximum and minimum range of stress and under the conditions of minimum strain, the plate made with a constant increment. In the experimental models, the plate thickness was given a power of 40 Newton, according to the thickness of the press die through an iterative process. When the stress and strain was applied to the die thickness, 7-8mm thickness could be obtained by optimizing.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

Feasible Approach for Image Reconstruction in Two Phase Flow Problems (이상유동에서의 영상복원을 위한 효율적 기법)

  • Cheon, W.G.;Lee, H.J.;Lee, Y.J.;Kim, M.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.87-96
    • /
    • 2005
  • 본 논문은 압력차로 인한 유체의 유동장에서 서스펜션의 입자 밀도를 분포 규명하기 위해 적용할 수 있는 Electric Impedance Tomography (EIT)의 새로운 기법에 대한 효율성을 다루고 있다. Regularized Newton-Raphson iterative method를 근간으로 inverse problem의 해를 구하는데, 이는 곧 목적 함수(object function)를 몇 가지의 제한조건(constraints) 하에서 최소화시키는 과정이라 할 수 있다. 한편, 관련 forward problem은 유한요소법(FEM)을 이용하여 해결하며, 기존의 연구와는 달리 선형 형상 함수(linear shape function)를 이용하여 전도도가 연속적인 물성치로 유동장에 분포되어 있는 것으로 가정하였다. 여러 경우의 test run에 대한 결과는 본 논문에서 적용한 방법론의 타당성을 보여 주고 있다. 태양에너지의 추출을 위해 직접촉식 열교환기가 종종 이용되고 있는데, 본 연구는 열교환기 내부의 분산 유체에 대한 해석에 일조를 할 수 있을 것으로 기대된다.

Downlink Capacity Analysis of Distributed Antenna Systems with Imperfect Channel State Information

  • Xu, Weiye;Lin, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.253-271
    • /
    • 2017
  • In this paper, considering that perfect channel state information (CSI) is hard to achieve in practice, the downlink capacity of distributed antenna systems (DAS) with imperfect CSI and multiple receive antennas is investigated over composite Rayleigh fading channel. According to the performance analysis, using the numerical calculation, the probability density function (PDF) of the effective output SNR is derived. With this PDF, accurate closed-form expressions of ergodic capacity and outage probability of DAS with imperfect CSI are, respectively, obtained, and they include the ones under perfect CSI as special cases. Besides, the outage capacity of DAS in the presence of imperfect CSI is also derived, and a Newton's method based practical iterative algorithm is proposed to find the accurate outage capacity. By utilizing the Gaussian distribution approximation, another approximate closed-form expression of outage capacity is also derived, and it may simplify the calculation of accurate outage capacity. These theoretical expressions can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI. Simulation results verify the effectiveness of the theoretical analysis, and the system capacity can be improved by increasing the receive antennas, and decreasing the estimation error or path loss. Moreover, the system can tolerate the estimation error variance up to about 0.01 with a slight degradation in the capacity.

Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors (볼 베어링과 형상오차를 갖는 하우징의 끼워 맞춤에 따른 베어링 진동 및 피로 수명의 영향)

  • Lee, Young-Keun;Lee, Seok-Hoon;Jung, Il-Kwon;Cha, Cheol-Hwan;Han, Hyo-Seup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.441-451
    • /
    • 2006
  • It is known that ball bearings mounted in housing or on shaft are playing a key role to keep it running smoothly. The roundness of a housing bore on which bearing outer ring is mounted with interference has directly affected the running accuracy of bearing. The running accuracy of bearing, therefore, can extend the significant influence to the rotating machinery as well. In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after mounted in housing bore are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then Newton-Raphson iterative method was introduced to be utilized in the analysis. The results show that the vibration magnitude of ball bearing fitted into housing unit is appeared considerably larger than the one of its pre-assembling. And theoretical $L_{10}$ life which ninety percent of the bearing population will endure decreased in about fifty percent.

Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors (형상오차를 갖는 보올 베어링과 하우징의 끼워 맞춤에 따른 베어링 진동 및 수명의 영향)

  • Lee, Young-Keun;Lee, Seok-Hoon;Jung, Il-Kwon;Cha, Cheol-Hwan;Han, Hyo-Seup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.112-118
    • /
    • 2005
  • Ball bearings which were fitted between housing and shaft play an important role in rotating shaft system smoothly, Therefore bearing's running accuracy has significant influence on that of rotating machinery. Manufacturing accuracy of bearings as well as that of shaft and housing is main factor to affect bearing running accuracy In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after being fitted into housing are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then these analysis was conducted utilizing the Newton-Raphson iterative method. The results show that vibration magnitude of ball bearing fitted into housing is considerably larger than before assembly, and bearing's theoretical L$_{10}$ fatigue life that ninety percent of the bearing population will endure decreased in about fifty percent.

  • PDF