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1. INTRODUCTION examples around us such as food or composite
materials. It is also often observed in energy

For years, suspension phenomena attracted  transport processes in nature or engineering
many scientists and engineers because of its  plants. A suspension of liquid droplets or
involvement in many real world problems. fine solid particles in a fluid is witnessed
These are readily found from those simple in rivers and oceans as particles remain
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suspended so long as energy is applied to the
In a spray column type direct
(DCHX),
droplets injected through a sparger from the
bottom could form a suspension depending
on the operating and physical conditions
involved. DCHXs are often used in the solar
energy exploitation.

Major efforts are directed in developing new
methods to resolve the particle-volume fraction

system.

contact heat exchanger small

distribution in a suspension experimentally
and theoretically. Gadala-Maria and Acrivos
(1980) observed a decrease in the suspension
viscosity in Couette rheometer. Leighton and
Acrivos (1987) showed experimentally and
theoretically that the particles migrate from
the higher shear regions to the lower ones in
Couette rheometer and this migration cause
a decrease in the apparent viscosity. Using
NMR image, Abbotte et al. (1991) found that
particles migrate away from the inner
cylinder and move toward the outer wall
under the
rheometer.

shear rate in Couette
Many other studies on the
particle migration under shear have been
conducted by using NMR image (Chow et al.,
1994 Mondy et al., 1994. Corbett et al.,
1995]) and laser Dopler velocimetry (LDV)
(Koh et al., 1994; Lyon and Leal, 1998). The
first model of the particle migration under

low

shear was proposed by Leighton and Acrivos
(1987). By extending their model, Phillips et
al. (1992) proposed a new constitutive equation
which can measure the actual particle
concentration profile. This model predicted
the of particle
concentration profile under the Couette and

experimental results

88

Poiseuille flow quite well.

Recently, EIT technique is employed to
investigate two-phase flow phenomena [Reinecke
et al., 1988; Butler and Bonnecase, 1999,
because it is relatively inexpensive and has
good time resolution. In the present study, the
shear induced particle migration subjected to
a pressure driven flow field is visualized by
nonintrusive EIT technique. The proposed
image reconstruction algorithm has been
tested for artificial particle
concentration where the

several

distributions
reconstructed images are compared with
those generated by the NMR technique in
previous studies.

2. THEORETICAL ANALYSIS

The relationship between the dimensionless

and volume fraction ©vof
(Meredith and

conductivity ©
suspension was given as
Tobias, 1961)

/2

24 - (63 + 448, + 6457 )
c =
- 28+0,) (1)

64 =6/ {5 the of the
conductivity of suspension with respect to
that of pure liquid. By using the above
equation, the conductivities are converted
In an EIT
system, an array of electrodes are attached
on the boundary of an object and small
alternating currents are injected through
these electrodes and the resulting voltages
are measured. Based on these measured data

where ratio

into particle concentrations.
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along the boundary, the internal conductivity
(or impedance) distribution can be obtained.
Mathematically, the EIT reconstruction
problem is a nonlinear ill-posed inverse
problem. The numerical algorithm, which
determines the internal conductivity distribution
based on the above mentioned boundary
data, is not a straight forward one. It
requires an iterative procedure of solving a
forward problem with the newly-computed
conductivity distribution from an inverse
problem. The forward problem of EIT
calculates the boundary voltages by using an
assumed conductivity distribution, and the
inverse problem reconstruct the conductivity
distribution by wusing boundary voltage
measurements. The details of the forward
and inverse problems are discussed below.

2.1 Forward Problem

When the conductance distribution oY)
and boundary current density I are given,
the voltage distribution ¢ within and on the
object boundary is governed by the following

Laplace equation and the Neumann type
boundary conditions:

V.oVd=0 (2)
c@ =1
én  on the electrodes (3)

where n is the outward directed normal
vector.

Since the above equation can’t be solved
analytically for an arbitrary conductivity
distribution, the numerical method such as
FEM method should be employed to obtain

the solutions. In most of EIT problems,
the conductivity(or impedance) within the
element assumed to be constant, that is the
conductivity distribution is considered to be
piecewise continuous. This enables the above
differential equation to be expressed in the
following algebraic equations:

[Y]vloder =l (4)
where N is the number of nodes. The global
stiffness matrix Y is very sparce, which
requires a sparce matrix solver. The solver
should handle any sparcity in a matrix
without undue difficulties. Now, the voltage
distribution can be approximated hy the
solution of the above algebraic equation. The
details of matrix Y, and vectors and c are
given in Woo (1990).

Butler and Bonnecaze (1999) assumed that
the particle concentration within the element
be constant and the conductivity values of
the elements in any ring be the same. Based on
this assumption, they used 4 electrode arrays
and reconstructed the particle concentration
profile by employing a three-dimensional
inverse algorithm using 10 terms of the
two-dimensional (2-D) model. The size of
stiffness matrix of the 3-D model is much
larger than the 2-D model. If 10 terms of the
2-D model are used in the 3-D model, the
size of the stiffness matrix of the 3-D model
is 10x10times larger than that of the 2-D
model. Therefore, the computational load of
the 3-D model is much heavier. In this
study, it is assumed that the conductivity be
continuous within the entire domain and
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varies only with the radial position. The
conductivity distribution is approximated as
follows:

ofx.y)= Fo.0,(x.¥)= 00,1 (5)

where ®is the interpolation function. If
the simplest case is chosen which could be
characterized by a triangular element, a

bilinear shape function for ¢ and a
bilinear interpolation function for O, the
discontinuity of conductance distribution is
readily resolved. This also results in a slight

change in the structure of matrix Y by
adopting © = (07 +03+0)/3 where ois the

conductivity of e-th element, and® is the
conductivity of i-th node in e-th element .
The proposed continuous conductivity model
Is more physically realistic than Butler and
Bonnecaze's (1999) piecewise continuous
model since the conductivity is a continuous
function of radial position, especially, in this
problem. The conductivity values of nodes in
any ring are set to their average value after
each the radial

iteraton to enforce

conductivity profile.

2.2 Inverse Problem

The inverse problem of EIT maps the
boundary voltages from real or artificial
experiments to conductivity images. The
objective function may be chosen to minimize
the square error,

(D(G) = 1/2 [V(G) -V, ]T [V(G) -V, ] (6)

90

where Vo is the vector of measured voltage

and V(o) is calculated boundary voltage
vector which should be manipulated to match
v

O .
To find o, which minimizes the above object
function, its derivative is set to zero:

o'(o)=[v(o)]' (o) -V, ]=0 (7)
4 .. = @—
where 00 is the Jacobian matrix. For

the solution of the above eqn. (7), the
Newton-Raphson linearization is brought in
for the conductivity vector o* as shown in
the following:

d)'(ck“ )= (D'(Gk )+ CI)”(Gk XGM -c* ): 0

The term ®"is called the Hessian matrix,
which is expressed as

o' =[v]v+Tel-v,] (8)

where ® is the Kronecker matrix product.
Since V" is difficult to calculate and relatively
small, the second term in the above equation
is usually omitted. Therefore the Hessian
matrix is modified as

o =[] v ©

The Hessian matrix is known to be
ill-conditioned, which could interfere with
the performance of image reconstruction

algorithm. To overcome this problem, the
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object function which should be minimized,
is regularized as:

aio=Y2fa -V MoVl ] (1)

where L is regularization matrix and is a
regularization parameter. The most often
used regularization matrix is identity matrix
(Hua, et al., 1988). The iterative equation to
refresh the conductivity vector based on the
above regularized object function is derived
as

Gk+1=Gk+AGk (118)
sot =BV, Vo J-al'Let} (11 p)
H=J"T+al'L (11.c)

where J and H are the Jacobian and the
modified Hessian matrix, respectively.

There are various regularization algorithms
(Vauhkonen, 1997). In commonly used
algorithm, the increment of conductivity
vector is given as

At = (1T + L) I (v, - v(s* )] (12)
where L'L=diag0"J) in NOSER algorithm
(Cheney et al., 1990), L'L=I (identity) in
Levenberg-Marquadt algorithm (Hua et al.,
1988) and L'Lo term is enforced to be zero
vector. In these cases, the regularization
matrix is regarded as to represent an

approximation for the second term in
Hessian matrix. In these algorithems, the

convergence becomes worse if L'Lo terms are
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considered.
In the subspace regularization method, the
regularization matrix L is chosen to be the

null space of conductivity vector, L =nullls)

In this choice, L'Lo term naturally becomes
zero vector and the increment of conductivity
vector is given as in eqn. (12). Vauhkonen et
al. (1998) have shown that the subspace
regularization yields more realistic reconstruction
which could handle measurement errors
of the
subspace regularization is used in this study.

more efficiently. This approach
is a large
positive value which changes accordingly
If
a =0 this regularization scheme turns into
the Newton-Raphson method.

The following root-mean-squared global
error (€) is defined to check the convergence

The regularization parameter®

with the iterative solution procedure.

of the inverse problem:

(V‘VO)T V_Vo)
Vo (13)

E=

If ¢ is less than the predetermined small
value, is assumed and the
reconstruction is terminated. In this study,
e=10" If e the
regularization parameter @ decreases rapidly,
and vice versa.

convergence

is adopted. decreases,

2.3 Calculation of the Jacobian
Matrix.

The iteration procedure of the inverse

requires the resolution of the

forward problem as it is necessary to obtain

problem
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the boundary voltagesand the Jacobian
matrix. The Jacobian matrix for the k-th
current pattern

SERG
| éo, 90, | is obtained as

o = a—Yc?‘ =-Y" a—YY’ICk =-Y" gXY—W
i i a i

dc; O, dc; G '

(14)

where T is a transformation matrix, which
The
in the above
The full

extracts the boundary informations.
matrix and vectors used
equation is given in eqn. (4).
Jacobian matrix is given as

I N (15)
where P is the number of injected current
patterns. Therefore the size of the Jacobian
matrix is (L-DxPxN  where 1, P, N
indicate the number of electrodes, current
patterns, and nodes, respectively. If one of
the electrodes is chosen as a reference
electrode, there are only (L.-1) voltages for
each current pattern. In the piecewise
such as Butler and
Bonnecaze's (1999), the size of Jacobian
matrix is (L-DxP)xE  where E is the

number of element and E>N_ The size of

continuous model,

Jacobian matrix of the present continuous
model is smaller than that of the Butler and
(1999) continuous
model. This manifests that the present model

Bonecaze's piecewise

could become more computationally efficient
than the Butler and Bonnecaze's approach.
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There are many data collecting methods
such as neighboring method, cross method,
opposite method, multi-reference method
and adaptive method. The characteristics of
these methods are summarized in Webster’s
(1990). Of these, the adaptive method,
which yields the desired current distribution
simply by simultaneously injecting currents
through all the electrodes, is known to be the
best method. In this study, we use FEM grid
given in Fig. 2 and inject P=16gimple
into L=32
simultaneously as follows:

current patterns electrodes

1

o [sin(kg))
cos(kg,) 1=12,A ,L/2 o4 k=12,A P
(16)

where & =2l/L

Based on the theoretical
actual experimentations could be made on a
DCHX. Fig. 1
measurement section with 32 electrodes.

background,

gives an example of the

Fig. 1. A measurement section set up in a spray
column type direct contact heat
exchanger(DCHX)
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3. RESULTS AND DISCUSSION
(RECONSTRUCTION OF PARTICLE
DISTRIBUTION)

The resolution of the EIT system depends
on various variables, such as the conductivity
contrast and its distribution, injected
current patterns, and the errors in voltage
measurements. This calls for a verification
test to assess the appropriateness of the
present EIT technique. A series of simulation
has been carried out in this regard.

To investigate the effect of the conductivity
distribution on the resolution of reconstructed
images, an artificial conductivity distribution
is assumed with which the synthetic
boundary voltages are obtained by using the
forward solver described earlier. In this
study, identical values are enforced for the
conductivities at the same radial positions
and the two-dimensional inverse algorithm
described above is adopted. The results of
such examples are shown in Figs. 2-5. The
conductivity profile in the first example, as
shown in Fig. 2, has a step change at

t/R =05 The reconstructed profile matches
the original profile near the wall very well,
and accurately predicts its location of a step
change. The deviation near the center is an
indication that the cause(the change of
conductivity vector)-and-effect(the boundary
voltages) relation is rather dull in contrast
to what’s been observed near the wall.
Similar behaviors are also observed for the
other case as shown in Fig. 3, which includes
two large step changes in the original
conductivity distribution.

Conductivity (1/( Qdm))

Fig. 2. Computer simulation result of example 1.

Conductivity (1/(Qdm))

Fig. 3. Computer simulation result of example 2.

Conductivity (1/( Q dmy))

Fig. 4. Computer simulation result of example 3.
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For the shear-induced particle migration in a
it deems valid to assume a
continuous conductivity distribution. The third
example in Fig. 4 shows a shallow dip in its
distribution curve with a small difference in its

suspension,

maximum and minimum values. Especially,
the reconstructed image tracks the original
image fairly well. The last of the simulation
examples is given in Fig. 5. where the
distribution curve shows a monotonic increase
of conductivity as its radial position gets
closer to the wall. It also features a relatively
large contrast ratio. The conductivity value
almost triples as it varies from the center to
the wall. The reconstructed image is in a good
agreement with the original one except near
the These results are quite
comparable to those produced by Butler and
Bonnecaze's (1999) 3-D model and much
better than their 2-D results. However, a
direct comparison with the Butler and
Bonnecaze's model deems impossible as they

center.

used a piecewise continuous conductivity
model different from the present continuous
conductivity model.

0.10
oos T Original Distribution
®  Reconstructed Distribution o
0.08 | o
= 007 L
£ .
G 006 .
=
Z 005 po L]
R
2 .
"a 0.03 i
S
oot
0.01F
0.00 L L L 1 I

0.0 02 04 0.6 0.8 1.0
Radial Position (t/R)

Fig. 5. Computer simulation result of example 4.
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Fig. 6. Comparison between the simulation resultwith
theory (Phillips, et al., 1992) and NMR imaging
(Hampton, et al., 1997) for the case of

average volume fraction <CV> =0.45 .

The particle volume-fraction distribution
investigated
theoretically and experimentally. The particle
concentration distributions determined by the
diffusion model (Phillips, et al., 1992) and
NMR image (Hampton, et al., 1997) are
summarized in Fig. 6. Based on the outcome
of the diffusion model and eqn. (1), the
original conductivity distribution is obtained

under shearing has been

and the numerical simulation has been
carried out to reconstruct the conductivity
distribution. Fig. 6. shows a comparison of
the simulation results with the NMR
images. As shown in this figure, the particle
concentration distribution reconstructed by
the EIT technique agrees quite well with
the other methods except near the inner
region.

This discrepancy demonstrates the weakness
of the cause-and-effect relationship within
the inner region.
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4. CONCLUSIONS

A numerical algorithm is proposed to obtain
the particle concentration profile in a
suspension subjected to a pressure driven
flow field by using the EIT technique. On the
basis of the geometry, the axially symmetric
flow field, and the continuity of the particle
concentration distribution, an axially symmetric
node-wise reconstruction algorithm has been
developed and tested. To establish its
reliability, comparisons are made with other
methods and the results are analyzed in this
regard. It appears that the method could be
easily applied to study the dispersed fluid in
a direct contact heat exchanger (DCHX)
often used for solar energy exploitation.
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