• Title/Summary/Keyword: Newton formula

Search Result 51, Processing Time 0.026 seconds

ON POSITIVE DEFINITE SOLUTIONS OF A CLASS OF NONLINEAR MATRIX EQUATION

  • Fang, Liang;Liu, San-Yang;Yin, Xiao-Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.431-448
    • /
    • 2018
  • This paper is concerned with the positive definite solutions of the nonlinear matrix equation $X-A^*{\bar{X}}^{-1}A=Q$, where A, Q are given complex matrices with Q positive definite. We show that such a matrix equation always has a unique positive definite solution and if A is nonsingular, it also has a unique negative definite solution. Moreover, based on Sherman-Morrison-Woodbury formula, we derive elegant relationships between solutions of $X-A^*{\bar{X}}^{-1}A=I$ and the well-studied standard nonlinear matrix equation $Y+B^*Y^{-1}B=Q$, where B, Q are uniquely determined by A. Then several effective numerical algorithms for the unique positive definite solution of $X-A^*{\bar{X}}^{-1}A=Q$ with linear or quadratic convergence rate such as inverse-free fixed-point iteration, structure-preserving doubling algorithm, Newton algorithm are proposed. Numerical examples are presented to illustrate the effectiveness of all the theoretical results and the behavior of the considered algorithms.

Test of Stokes-Einstein Formula for a Tracer in a Mesoscopic Solvent by Molecular Dynamics Simulation

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.574-578
    • /
    • 2013
  • In this work, the friction and diffusion coefficients of a tracer in a mesoscopic solvent are evaluated as a function of the tracer size by a hybrid molecular dynamics simulation where solute molecules evolve by Newton's equations of motion but the solvent evolves through the multi-particle collision dynamics. The friction coefficient is shown to scale linearly with the tracer size for larger tracers in accord with predictions of hydrodynamic theories. The diffusion coefficient of tracer is found to be inversely proportional to tracer size. The behavior of Stokes-Einstein formula is validated as a function of tracer size.

Delay-Dependent Robust Stability of Uncertain Time-Delayed Linear Systems (불확정성 시간지연 선형시스템의 지연 종속 강인 안정성)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.147-153
    • /
    • 2006
  • In this paper, we propose a new delay-dependent criterion on the robust stability of time-delayed linear systems having norm bounded uncertainties. Based on new form of Lyapunov-Krasovskii functional and the Newton-Leibniz formula, we drive a result in the form of LMI which guarantees the robust stability without any model transformation. The Newton-Leibniz equation was used to relate the cross terms with free matrices. Finally, we show the usefulness of our result by two numerical examples.

An ELI-based Dynamic Load Balancing for Parallel Program Executions (병렬 프로그램 실행을 위한 ELI 기반 동적 부하 균등화)

  • 배인한
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1016-1026
    • /
    • 1994
  • In this paper, we have studied load balancing problems in distributed systems. The nodes of distributed systems exchange periodically system state information each other. The information is stored in history. Based on the information, we compute an expected load index(ELI) using a five-degree interpolation polynomial in Newton`s backward difference interpolation formula. A new location policy of dynamic load balancing systems makes use of the ELI. We show that its performance is better than that of the existing load balancing algorithm through a simulation study.

  • PDF

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.

Dynamics and Control of 6-DOF Shaking Table with Bell Crank Structure

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui;Park, Jong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.296-301
    • /
    • 2005
  • This paper describes the kinematics, dynamics and control of a 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. In this shaking table, the bell crank mechanism is used to reduce the amount of space needed to install the shaking table and create horizontal displacement of the platform. In kinematics, joint design is performed using $Gr{\ddot{u}}bler's$ formula. The inverse kinematics of the shaking table is discussed. The derivation of the Jacobian matrix is presented to evaluate singularity conditions. Considering the maximum stroke of the hydraulic actuator, collision between links and singularity, workspace is computed. In dynamics, computations are based on the Newton-Euler formulation. To derive parallel algorithms, each of the contact forces is decomposed into one acting in the direction of the leg and the other acting in the plane orthogonal to the direction of the leg. Applying the Newton-Euler approach, the solution of inverse dynamics is almost completely parallel. Only one of the steps-the application of the Newton-Euler equations to the platform-must be performed on one single processor. Finally, the efficient control scheme is proposed for the tracking control of the motion platform.

  • PDF

Delay-dependent Stabilization for Systems with Multiple Unknown Time-varying Delays

  • Wu, Min;He, Yong;She, Jin-Hua
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.682-688
    • /
    • 2006
  • This paper deals with the delay-dependent and rate-independent stabilization of systems with multiple unknown time-varying delays and time-varying structured uncertainties. All the linear matrix inequalities based conditions are derived by employing free-weighting matrices to express the relationships between the terms in the Leibniz-Newton formula. The criteria do not require any tuning parameters. Numerical examples demonstrate the validity of the method.

Delay-dependent stabilization for time-delay systems;An LMI approach

  • Cho, H.J.;Park, Ju-H.;Lee, S.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1744-1746
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.

  • PDF

A METHOD USING PARAMETRIC APPROACH WITH QUASINEWTON METHOD FOR CONSTRAINED OPTIMIZATION

  • Ryang, Yong-Joon;Kim, Won-Serk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • This paper proposes a deformation method for solving practical nonlinear programming problems. Utilizing the nonlinear parametric programming technique with Quasi-Newton method [6,7], the method solves the problem by imbedding it into a suitable one-parameter family of problems. The approach discussed in this paper was originally developed with the aim of solving a system of structural optimization problems with frequently appears in various kind of engineering design. It is assumed that we have to solve more than one structural problem of the same type. It an optimal solution of one of these problems is available, then the optimal solutions of thel other problems can be easily obtained by using this known problem and its optimal solution as the initial problem of our parametric method. The method of nonlinear programming does not generally converge to the optimal solution from an arbitrary starting point if the initial estimate is not sufficiently close to the solution. On the other hand, the deformation method described in this paper is advantageous in that it is likely to obtain the optimal solution every if the initial point is not necessarily in a small neighborhood of the solution. the Jacobian matrix of the iteration formula has the special structural features [2, 3]. Sectioon 2 describes nonlinear parametric programming problem imbeded into a one-parameter family of problems. In Section 3 the iteration formulas for one-parameter are developed. Section 4 discusses parametric approach for Quasi-Newton method and gives algorithm for finding the optimal solution.

  • PDF