• Title/Summary/Keyword: Newton 방법

Search Result 284, Processing Time 0.032 seconds

Decoding of Calderbank-McGuire Codes by Using Newton's Identity (Newton 항등식을 이용한 Calderbank-McGuire부호의 복호방법)

  • 임두루;양경철
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1997.11a
    • /
    • pp.183-188
    • /
    • 1997
  • 유한체에서 정의된 선형부호의 경우 Newton 항등식을 이용한 복호방법이 알려져 있다. 본 논문에서는 유한체 뿐 만 아니라 Z$_4$위에서도 Newton 항등식이 존재함을 보이고, 이를 이용하여 Z$_4$위의 Calderbank-McGuire 부호의 복호방법을 제안하였다.

  • PDF

Initial Point Optimization for Square Root Approximation based on Newton-Raphson Method (Newton-Raphson 방식의 제곱근 근사를 위한 초기값의 최적화)

  • Choi Chang-Soon;Lee Jin-Yong;Kim Young-Lok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.15-20
    • /
    • 2006
  • A Newton-Raphson Method for table driven algorithm is presented in this paper. We concentrate the approximation of square root by using Newton-Raphson method. We confirm that this method has advantages of accurate and fast processing with optimized initial point. Hence the selection of the fitted initial points used in approximation of Newton-Raphson algorithm is important issue. This paper proposes that log scale based on geometric wean is most profitable initial point. It shows that the proposed method givemore accurate results with faster processing speed.

Quasi-Steady Model of Newton-Raphson Form for Natural Rivers (자연하천에 대한 Newton-Raphson 형태의 준정상류 계산모형)

  • Kim, Jin-Soo;Jun, Kyung-Soo;Yoon, Byung-Man;Woo, Hyo-Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.640-644
    • /
    • 2008
  • 하상경사가 커서 동수역학적 부정류 계산모형을 안정적으로 적용하기 어렵고, 홍수파의 감쇄효과가 적은 중소하천에 적합한 준정상류 계산모형을 개발하였다. 수립된 모형은 매 시각 유량에 대하여 1차원 하천 부등류 지배방정식인 단면 평균된 1차원 에너지 방정식을 풀도록 구성되어 있으며, 수치해법으로는 Newton-Raphson 방법을 적용한 표준축차법을 사용하였다. Newton-Raphson 방법을 적용하기 위해서는 통수면적, 하폭, 윤변, 동수반경 및 수위에 대한 윤변의 변화율 등의 변수들이 필요하다. 이와 같은 변수들은 각 계산점에서 수위를 계산하기에 앞서 단면자료를 사용하여 0.1 m 간격으로 모든 수위에 대하여 그 값들을 미리 구한 후, 반복 계산 단계에서 사용되는 수위에 대하여 필요한 변수들을 앞서 계산된 변수들과 선형 보간하여 사용하도록 하였다. 하천 구간내에 보가 존재하는 경우에는 보가 위치한 상 하류 간의 지배방정식으로 에너지 방정식 대신에 월류 유량 관계식을 사용하였으며, 이때의 수치해법 역시 Newton-Raphson 방법을 사용하였다. 수립된 모형을 한탄강 하류 구간에 적용하여 HEC-RAS 모형과 모의 결과를 비교한 결과, 두 모형의 계산결과가 잘 일치하는 것으로 나타났다. 에너지 경사항의 근사 방법에 따른 민감도 분석을 실시하였다.

  • PDF

A Predicted Newton-Raphson Iterative Method utilizing Neural Network (신경회로망을 이용한 예측 뉴턴-랩손 반복계산기법)

  • Kim, Jong-Hoon;Kim, Yong-Hyup
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.339-344
    • /
    • 2000
  • Newton-Raphson 기법은 구조물의 비선형 해석에 널리 쓰이는 반복계산기법이다. 비선형 해석을 위한 반복계산기법은 컴퓨터의 발달을 감안해도 상당한 계산시간이 소요된다. 본 논문에서는 신경회로망 예측을 사용한 Predicted Newton-Raphson 반복계산기법을 제안하였다. 통상적인 Newton-Raphson 기법은 이전스텝에서 수렴된 점으로부터 현재 스텝의 반복계산을 시작하는 반면 제시된 방법은 현재 스텝 수렴해에 대한 예측점에서 반복계산을 시작한다. 수렴해에 대한 예측은 신경회로망을 사용하여 이전 스텝 수렴해의 과거경향을 파악한 후 구한다. 반복계산 시작점이 수렴점에 보다 근접하여 위치하므로 수렴속도가 빨라지게 되고 허용되는 하중스텝의 크기가 커지게 된다. 또한 반복계산의 시작점으로부터 이루어지는 계산과정은 통상적인 Newton-Raphson 기법과 동일하므로 기존의 Newton-Raphson 기법과 정확히 일치하는 수렴해를 구할 수 있다. 구조물의 정적 비선형 거동에 대한 수치해석을 통하여 modified Newton-Raphson 기법과 제시된 Predicted Newton=Raphson 기법의 정확성과 효율성을 비교하였다. 제시된 Predicted Newton-Raphson 기법은 modified Newton-Raphson 기법과 동일한 해를 산출하면서도 계산상의 효율성이 매우 큼을 확인할 수 있었다.

  • PDF

Construction the pseudo-Hessian matrix in Gauss-Newton Method and Seismic Waveform Inversion (Gauss-Newton 방법에서의 유사 Hessian 행렬의 구축과 이를 이용한 파형역산)

  • Ha, Tae-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.191-196
    • /
    • 2004
  • Seismic waveform inversion can be solved by using the classical Gauss-Newton method, which needs to construct the huge Hessian by the directly computed Jacobian. The property of Hessian mainly depends upon a source and receiver aperture, a velocity model, an illumination Bone and a frequency content of source wavelet. In this paper, we try to invert the Marmousi seismic data by controlling the huge Hessian appearing in the Gauss-Newton method. Wemake the two kinds of he approximate Hessian. One is the banded Hessian and the other is the approximate Hessian with automatic gain function. One is that the 1st updated velocity model from the banded Hessian is nearly the same of the result from the full approximate Hessian. The other is that the stability using the automatic gain function is more improved than that without automatic gain control.

2D Image Reconstruction of Earth Model by Electrical Resistance Tomography (ERT를 이용한 2차원 대지모델 영상복원)

  • Boo, Chang-Jin;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3460-3467
    • /
    • 2013
  • The In this paper, we have made numerical experiments to compare 2D image reconstruction algorithm of earth model by electrical resistance tomograpy (ERT). Gauss-Newton, simultaneous iterative reconstruction technieque (SIRT) and truncated least squares (TLS) approaches for Wenner and Schlumberger electrode arrays are presented for the solution of the ERT image reconstruction. Computer simulations show that the Gauss-Newton and TLS approach in ERT are proper for 2D image reconstruction of an earth model.

A Study on Channel Equalization for DS-CDMA System in Fast Fading Environment (Fast Fading 환경에서 DS-CDMA 시스템에 대한 채널 등화에 관한 연구)

  • 김원균;박노진;강철호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.937-943
    • /
    • 2001
  • fast fading 채널 특성을 갖는 DS-CDMA 다중 사용자 환경에서 Normalized CMA(Constant Modulus Algorithm)와 Newton 방식을 이용한 CMA를 이용하여 빠른 수렴속도와 작은 평균 자승 오차(Mean Square Error)를 동시에 개선할 수 있는 등화 방법을 제안하였다. Normalized CMA는 Newton 방식을 이용한 CMA에 비해 작은 평균 자승오차를 갖지만 수렴속도가 느리다는 단점이 있다. 반면 Newton 방식을 이용한 CMA는 Normalized CMA에 비해 수렴속도는 빠르지만 큰 평균 자승 오차를 갖는다는 단점이 있다. 따라서 빠른 수렴 속도와 작은 평균 자승 오차를 동시에 얻기 위한 구조를 제안하였으며, 이 구조는 각각의 알고리즘을 사용하는 방법과는 달리 두 개의 알고리즘을 동시에 이용한다. 모의 실험 결과, 제안한 기법이 Normalized CMA보다 약 320번, Newton 방식을 이용한 CMA보다는 170번 정도 빠른 수렴 속도를 나타냈으며, 동시에 수렴시의 평균 자승 오차는 Newton 방식을 이용한 CMA보다 약 0.6dB, Normalized CMA보다 약 0.4dB 정도 낮은 수치를 나타내는 것을 확인할 수 있었다.

  • PDF

Conductivity Image Reconstruction Using Modified Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 수정된 가우스-뉴턴 방법을 이용한 도전율 영상 복원)

  • Kim, Bong Seok;Park, Hyung Jun;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied currents and measured voltages in a domain of interest. In this paper, a modified Gauss-Newton method is proposed for conductivity image reconstruction. In the proposed method, the dimension of the inverse term is reduced by replacing the number of elements with the number of measurement data in the conductivity updating equation of the conventional Gauss-Newton method. Therefore, the computation time is greatly reduced as compared to the conventional Gauss-Newton method. Moreover, the regularization parameter is selected by computing the minimum-maximum from the diagonal components of the Jacobian matrix at every iteration. The numerical experiments with several scenarios were carried out to evaluate the reconstruction performance of the proposed method.

Solution of Eigenvalue Problems for Nonclassically Damped Systems with Multiple Frequencies (중복근을 갖는 비비례 감쇠시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.205-216
    • /
    • 1998
  • A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of nonclassicary damped structural systems with multiple eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linear eigenproblem through matrix augmentation of the quadratic eigenvalue problem. In the iteration methods such as the inverse iteration method and the subspace iteration method, singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of the system. However, even though the shift value is an eigenvalue of the system, the proposed method provides nonsingularity, and that is analytically proved. Since the modified Newton-Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos method effectively produces better initial values than other methods, the results of the Lanczos method are taken as the initial values of the proposed method. Two numerical examples are presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF