• 제목/요약/키워드: Newton

검색결과 1,389건 처리시간 0.02초

ON THE APPLICABILITY OF TWO NEWTON METHODS FOR SOLVING EQUATIONS IN BANACH SPACE

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.369-378
    • /
    • 1999
  • In This study we examine the applicability of Newton's method and the modified Newton's method for a, pp.oximating a lo-cally unique solution of a nonlinear equation in a Banach space. We assume that the newton-Kantorovich hypothesis for Newton's method is violated but the corresponding condition for the modified Newton method holds. Under these conditions there is no guaran-tee that Newton's method starting from the same initial guess as the modified Newton's method converges. Hence it seems that we must always use the modified Newton method under these condi-tions. However we provide a numerical example to demonstrate that in practice this may not be a good decision.

신경회로망을 이용한 예측 뉴턴-랩손 반복계산기법 (A Predicted Newton-Raphson Iterative Method utilizing Neural Network)

  • 김종훈;김용협
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.339-344
    • /
    • 2000
  • Newton-Raphson 기법은 구조물의 비선형 해석에 널리 쓰이는 반복계산기법이다. 비선형 해석을 위한 반복계산기법은 컴퓨터의 발달을 감안해도 상당한 계산시간이 소요된다. 본 논문에서는 신경회로망 예측을 사용한 Predicted Newton-Raphson 반복계산기법을 제안하였다. 통상적인 Newton-Raphson 기법은 이전스텝에서 수렴된 점으로부터 현재 스텝의 반복계산을 시작하는 반면 제시된 방법은 현재 스텝 수렴해에 대한 예측점에서 반복계산을 시작한다. 수렴해에 대한 예측은 신경회로망을 사용하여 이전 스텝 수렴해의 과거경향을 파악한 후 구한다. 반복계산 시작점이 수렴점에 보다 근접하여 위치하므로 수렴속도가 빨라지게 되고 허용되는 하중스텝의 크기가 커지게 된다. 또한 반복계산의 시작점으로부터 이루어지는 계산과정은 통상적인 Newton-Raphson 기법과 동일하므로 기존의 Newton-Raphson 기법과 정확히 일치하는 수렴해를 구할 수 있다. 구조물의 정적 비선형 거동에 대한 수치해석을 통하여 modified Newton-Raphson 기법과 제시된 Predicted Newton=Raphson 기법의 정확성과 효율성을 비교하였다. 제시된 Predicted Newton-Raphson 기법은 modified Newton-Raphson 기법과 동일한 해를 산출하면서도 계산상의 효율성이 매우 큼을 확인할 수 있었다.

  • PDF

NEWTON AND QUASI-NEWTON METHODS FOR EQUATIONS OF SMOOTH COMPOSITIONS OF SEMISMOOTH FUNCTIONS

  • Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • 제6권3호
    • /
    • pp.747-756
    • /
    • 1999
  • The Newtom method and the quasi-Newton method for solving equations of smooth compositions of semismooth functions are proposed. The Q-superlinear convergence of the Newton method and the Q-linear convergence of the quasi-Newton method are proved. The present methods can be more easily implemeted than previous ones for this class of nonsmooth equations.

Newton-Raphson 방식의 제곱근 근사를 위한 초기값의 최적화 (Initial Point Optimization for Square Root Approximation based on Newton-Raphson Method)

  • 최창순;이진용;김영록
    • 대한전자공학회논문지SD
    • /
    • 제43권3호
    • /
    • pp.15-20
    • /
    • 2006
  • 본 논문은 Newton-Raphson 방법을 기반으로 하는 table-driven 알고리듬에 대해 연구되었다. 특히 본 논문에서는 Newton-Raphson 방법을 이용한 제곱근 근사에 중점을 두었다. Newton-Raphson방법에서 최적화된 초기근사해를 구하게 되면 제곱근 근사의 정확성을 높일 수 있으며, 연산 속도 또한 빨라지게 된다. 그러므로 Newton-Raphson 알고리듬에서 초기근사해를 어떻게 결정하느냐하는 것이 전체적인 알고리듬의 성능을 평가하게 되는 중요한 이슈이다. 본 논문에서는 Newton-Raphson 알고리듬의 초기 근사해를 기하평균을 기준으로 테이블에 저장, 연산의 속도와 최대 오차율을 줄일 수 있음을 확인하였다.

HIGH-ORDER NEWTON-KRYLOV METHODS TO SOLVE SYSTEMS OF NONLINEAR EQUATIONS

  • Darvishi, M.T.;Shin, Byeong-Chun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권1호
    • /
    • pp.19-30
    • /
    • 2011
  • In [21], we compared the Newton-Krylov method and some high-order methods to solve nonlinear systems. In this paper, we propose high-order Newton-Krylov methods combining the Newton-Krylov method with some high-order iterative methods to solve systems of nonlinear equations. We provide some numerical experiments including comparisons of CPU time and iteration numbers of the proposed high-order Newton-Krylov methods for several nonlinear systems.

아르스 마그나와 프린키피아에 나오는 수치해석적 기법

  • 이무현
    • 한국수학사학회지
    • /
    • 제15권3호
    • /
    • pp.25-34
    • /
    • 2002
  • This paper explains methods of numerical analysis which appear on Cardano's Ars Magna and Newton's Principia. Cardano's method is secant method, but its actual al]plication is severely limited by technical difficulties. Newton's method is what nowadays called Newton-Raphson's method. But mysteriously, Newton's explanation had been forgotten for two hundred years, until Adams rediscovered it. Newton had even explained finding the root using the second degree Taylor's polynomial, which shows Newton's greatness.

  • PDF

ON THE NEWTON-KANTOROVICH AND MIRANDA THEOREMS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • 제24권3호
    • /
    • pp.289-293
    • /
    • 2008
  • We recently showed in [5] a semilocal convergence theorem that guarantees convergence of Newton's method to a locally unique solution of a nonlinear equation under hypotheses weaker than those of the Newton-Kantorovich theorem [7]. Here, we first weaken Miranda's theorem [1], [9], [10], which is a generalization of the intermediate value theorem. Then, we show that operators satisfying the weakened Newton-Kantorovich conditions satisfy those of the weakened Miranda’s theorem.

  • PDF

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

CONVERGENCE THEOREMS FOR NEWTON'S AND MODIFIED NEWTON'S METHODS

  • Argyros, Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권4호
    • /
    • pp.405-416
    • /
    • 2009
  • In this study we are concerned with the problem of approximating a locally unique solution of an equation in a Banach space setting using Newton's and modified Newton's methods. We provide weaker convergence conditions for both methods than before [5]-[7]. Then, we combine Newton's with the modified Newton's method to approximate locally unique solutions of operator equations. Finer error estimates, a larger convergence domain, and a more precise information on the location of the solution are obtained under the same or weaker hypotheses than before [5]-[7]. The results obtained here improve our earlier ones reported in [4]. Numerical examples are also provided.

  • PDF