• 제목/요약/키워드: Newton's iteration

검색결과 50건 처리시간 0.018초

NEWTON SCHULZ METHOD FOR SOLVING NONLINEAR MATRIX EQUATION Xp + AXA = Q

  • Kim, Hyun-Min;Kim, Young-jin;Meng, Jie
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1529-1540
    • /
    • 2018
  • The matrix equation $X^p+A^*XA=Q$ has been studied to find the positive definite solution in several researches. In this paper, we consider fixed-point iteration and Newton's method for finding the matrix p-th root. From these two considerations, we will use the Newton-Schulz algorithm (N.S.A). We will show the residual relation and the local convergence of the fixed-point iteration. The local convergence guarantees the convergence of N.S.A. We also show numerical experiments and easily check that the N.S. algorithm reduce the CPU-time significantly.

NEWTON'S METHOD FOR EQUATIONS RELATED TO EXPONENTIAL FUNCTION

  • Jeong, Moonja
    • Korean Journal of Mathematics
    • /
    • 제9권1호
    • /
    • pp.67-73
    • /
    • 2001
  • For some equation related with exponential function, we seek roots and find the properties of the roots. By using the relation of the roots and attractors, we find a region in the basin of attraction of the attractor at infinity for Newton's method for solving given equation.

  • PDF

ON NEWTON'S METHOD FOR SOLVING A SYSTEM OF NONLINEAR MATRIX EQUATIONS

  • Kim, Taehyeong;Seo, Sang-Hyup;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제35권3호
    • /
    • pp.341-349
    • /
    • 2019
  • In this paper, we are concerned with the minimal positive solution to system of the nonlinear matrix equations $A_1X^2+B_1Y +C_1=0$ and $A_2Y^2+B_2X+C_2=0$, where $A_i$ is a positive matrix or a nonnegative irreducible matrix, $C_i$ is a nonnegative matrix and $-B_i$ is a nonsingular M-matrix for i = 1, 2. We apply Newton's method to system and present a modified Newton's iteration which is validated to be efficient in the numerical experiments. We prove that the sequences generated by the modified Newton's iteration converge to the minimal positive solution to system of nonlinear matrix equations.

AN ADAPTIVE PRIMAL-DUAL FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT ALGORITHM FOR LINEAR OPTIMIZATION

  • Asadi, Soodabeh;Mansouri, Hossein;Zangiabadi, Maryam
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1831-1844
    • /
    • 2016
  • In this paper, we improve the full-Newton step infeasible interior-point algorithm proposed by Mansouri et al. [6]. The algorithm takes only one full-Newton step in a major iteration. To perform this step, the algorithm adopts the largest logical value for the barrier update parameter ${\theta}$. This value is adapted with the value of proximity function ${\delta}$ related to (x, y, s) in current iteration of the algorithm. We derive a suitable interval to change the parameter ${\theta}$ from iteration to iteration. This leads to more flexibilities in the algorithm, compared to the situation that ${\theta}$ takes a default fixed value.

가변 시간 K차 뉴톤-랍손 부동소수점 나눗셈 (A Variable Latency K'th Order Newton-Raphson's Floating Point Number Divider)

  • 조경연
    • 대한임베디드공학회논문지
    • /
    • 제9권5호
    • /
    • pp.285-292
    • /
    • 2014
  • The commonly used Newton-Raphson's floating-point number divider algorithm performs two multiplications in one iteration. In this paper, a tentative K'th Newton-Raphson's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number divider unit. Also, it can be used to construct optimized approximate reciprocal tables.

이방성 재료의 소성변형 해석을 위한 고정점 축차 (Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials)

  • 양승용;김정한
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 2023
  • A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton-Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton-Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

K차 뉴톤-랍손 부동소수점수 N차 제곱근 (Kth order Newton-Raphson's Floating Point Number Nth Root)

  • 조경연
    • 대한임베디드공학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-51
    • /
    • 2018
  • In this paper, a tentative Kth order Newton-Raphson's floating point number Nth root algorithm for K order convergence rate in one iteration is proposed by applying Taylor series to the Newton-Raphson root algorithm. Using the proposed algorithm, $F^{-1/N}$ and $F^{-(N-1)/N}$ can be computed from iterative multiplications without division. It also predicts the error of the algorithm iteration and iterates only until the predicted error becomes smaller than the specified value. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number Nth root unit.

A Study on the Methods for Solving the Theodorsen Equation for Numerical Conformal Mapping

  • Song, Eun-Jee
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.66-70
    • /
    • 2012
  • Conformal mapping has been a familiar tool of science and engineering for generations. Determination of a conformal map from the unit disk onto the Jordan region is reduced to solving the Theodorsen equation, which is an integral equation for boundary correspondence functions. There are many methods for solving the Theodorsen equation. It is the goal of numerical conformal mapping to find methods that are at once fast, accurate, and reliable. In this paper, we analyze Niethammer’s solution based on successive over-relaxation (SOR) iteration and Wegmann’s solution based on Newton iteration, and compare them to determine which one is more effective. Through several numerical experiments with these two methods, we can see that Niethammer’s method is more effective than Wegmann’s when the degree of the problem is low and Wegmann’s method is more effective than Niethammer’s when the degree of the problem is high.

상하동요하는 2차원 원주의 고유진동수 (Natural Frequency of 2-dimensional Heaving Circular Cylinder)

  • 이승준
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.389-395
    • /
    • 2008
  • It is very well known that the natural frequency of an oscillating body on the free surface is determinable only after the added mass is given. However, it is hard to find analytical investigations in which actually the natural frequency is obtained. Difficulties arise from the fact that in order to determine the natural frequency we need to compute the added mass at least for a range of frequencies, and to solve an equation where the frequency is a variable. In this study, first, a formula is obtained for the added mass, and then an equation for finding the natural frequency is defined and solved by Newton's iteration. It is confirmed that the formula shows a good agreement with the results given by Ursell(1949), and the value of natural frequency is reduced by 21.5% compared to the pre-natural frequency, which is obtained without considering the effect of added mass.

A QUASI-NEWTON METHOD USING DIRECTIONAL DERIVATIVES FOR NONLINEAR EQUATIONS

  • Kim, Sun-Young
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.491-502
    • /
    • 1994
  • Many problems arising in science and engineering require the numerical solution of a system of n nonlinear equations in n unknowns: (1) given F : $R^{n}$ $\rightarrow$ $R^{n}$ , find $x_{*}$ $\epsilon$ $R^{n}$ / such that F($x_{*}$) = 0. Nonlinear problems are generally solved by iteration. Davidson [3] and Broyden [1] introduced the methods which had led to a large amount of research and a class of algorithm. This work has been called by the quasi-Newton methods, secant updates, or modification methods. Newton's method is the classical method for the problem (1) and quasi-Newton methods have been proposed to circumvent computational disadvantages of Newton's method.(omitted)

  • PDF