The process of new drug development consists of several stages; after identifying potential candidate compounds, preclinical studies using animal models link the laboratory and human clinical trials. Among many steps in preclinical studies, toxicology and safety assessments contribute to identify potential adverse events and provide rationale for setting the initial doses in clinical trials. Gene modulation is one of the important tools of modern biology, and is commonly employed to examine the function of genes of interest. Advances in new drug development have been achieved by exploding information on target selection and validation using genetically modified animal models as well as those of cells. In this review, a recent trend of genetically modified methods is discussed with reference to safety assessments, and the exemplary applications of gene-modulating tools to the tests in new drug development were summarized.
Drug regeneration technology is an efficient strategy than the existing new drug development process, which requires large costs and time by using drugs that have already been proven safe. In this study, we recognize the importance of the new drug regeneration aspect of new drug development and research in predicting functional similarities through the basic molecular structure that forms drugs. We test four string-based algorithms by using SMILES data and searching for their similarities. And by using the ATC codes, pair them with functional similarities, which we compare and validate to select the optimal model. We confirmed that the higher the molecular structure similarity, the higher the ATC code matching rate. We suggest the possibility of additional potency of random drugs, which can be predicted through data that give information on drugs with high molecular similarities. This model has the advantage of being a great combination with additional data, so we look forward to using this model in future research.
Recent technological innovations in the drug discovery process such as combinatorial synthesis and high throughput screening have led to the identification of an increasingly large number of compounds at the hits-to-leads stage. Therefore, rapid and precise pharmacokinetic/metabolic screening is essential to enhance the tractability of selected leads and to minimize the risk of failure in the later stages of drug development. (omitted)
Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the 'apicoplast', which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle's function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance.
Many neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are devastating disorders that affect millions of people worldwide. However, the number of therapeutic options remains severely limited with only symptomatic management therapies available. With the better understanding of the pathogenesis of neurodegenerative diseases, discovery efforts for disease-modifying drugs have increased dramatically in recent years. However, the process of translating basic science discovery into novel therapies is still lagging behind for various reasons. The task of finding new effective drugs targeting central nervous system (CNS) has unique challenges due to blood-brain barrier (BBB). Furthermore, the relatively slow progress of neurodegenerative disorders create another level of difficulty, as clinical trials must be carried out for an extended period of time. This review is intended to provide molecular and cell biologists with working knowledge and resources on CNS drug discovery and development.
The purpose of this article is to develop a dynamic model of organizational capabilities and knowledge creation, and at the same time identify the organizational capability factors for effective knowledge creation, by empirically analyzing the history of new Quinolone antibacterial drug compound (LB20304a) discovery process at LG, as a case in point. Major findings of this study are as follows. First, in a science-based area such as drug development, the core of successful knowledge creation lies in creative combination of different bodies of scientific explicit knowledge. Second, the greater the difficulty of learning external knowledge, the more tacit knowledge is needed for the recipient firm to effectively exploit that knowledge. Third, in science-based sector such as pharmaceutical industry, the key for successful knowledge creation lies in the capability of recruiting and retaining star scientists. Finally, for effective knowledge creation, a firm must keep its balance among three dimensions of organizational capabilities: local, process, architectural capabilities.
Kim, Jong-Wook;Kwon, Kwang-Il;Yoo, Kwang-Soo;Park, So-Hyun;Lim, Chul-Joo;Choi, Don-Woong
Journal of the Korean Applied Science and Technology
/
v.25
no.4
/
pp.539-555
/
2008
It is well understood that developing new drugs is one of the highest value-added businesses in a country; however, the current governments' spending in pharmaceutical research and development(R&D) is minimal in Korea. This paper suggests that different governmental bodies should take in charge of different stages of the R&D process in order to maximize the use of limited government research funding. First, during the initial phase of the drug development, including clinical trials, the Ministry of Education, Science and Technology is the most appropriate governmental organization to support the research. For later procedures such as supporting the industries for exporting developed drugs, legislative approvals, and building infrastructure for future clinical trials should be supported by the Ministry of Knowledge and Economy and the Ministry of Health and Welfare along with the Korea Food and Drug Administration(KFDA). The KFDA, which is the main governmental agency approving newly developed drugs in the market, will need to take a crucial responsibility in the initial phase of the pharmaceutical R&D by guiding the industries with timely and proper information. As a first step, it is recommended to set up and operate a center for supporting new drugs, so that the industries can facilitate the development of marketable drugs which meet customers' needs. Later, in order to expedite the process of exporting and getting approvals of the newly developed drugs from foreign countries, it is necessary to develop new approval system, which includes introduction of the Good Manufacturing Practice (GMP), mandatory validation system, and education program for supporting expertise. Lastly, the KFDA needs to take an active role in developing Korean pharmaceutical industries by communicating with other foreign governments with regards to the globalization of the Korean pharmaceutical industries. For example, as a follow up after the Free Trade Agreement(FTA), active discussion on GLP of Mutual Recognition Agreement(MRA) with the United States of America, should be seriously considered.
The value of living a long and healthy life without suffering has increased owing to aging populations, transition to welfare societies, and global interest in health deriving from the novel coronavirus disease pandemic. New drug development has gained attention as both a tool to improve the quality of life and high-value market, with blockbuster drugs potentially generating over 10 billion dollars in annual revenue. However, for newly discovered substances to be used as drugs, various properties must be verified over a long period in a time-consuming and costly process. Recently, the development of artificial intelligence technologies, such as deep and reinforcement learning, has led to significant changes in drug development by enabling the effective identification of drug candidates that satisfy desired properties. We explore and discuss trends in artificial intelligence for de novo drug design.
KIPS Transactions on Software and Data Engineering
/
v.11
no.1
/
pp.11-18
/
2022
De novo drug design is the process of developing new drugs that can interact with biological targets such as protein receptors. Traditional process of de novo drug design consists of drug candidate discovery and drug development, but it requires a long time of more than 10 years to develop a new drug. Deep learning-based methods are being studied to shorten this period and efficiently find chemical compounds for new drug candidates. Many existing deep learning-based drug design models utilize recurrent neural networks to generate a chemical entity represented by SMILES strings, but due to the disadvantages of the recurrent networks, such as slow training speed and poor understanding of complex molecular formula rules, there is room for improvement. To overcome these shortcomings, we propose a deep learning model for SMILES string generation using variational autoencoders with self-attention mechanism. Our proposed model decreased the training time by 1/26 compared to the latest drug design model, as well as generated valid SMILES more effectively.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.26
no.1
/
pp.36-43
/
2017
A drug infuser is a well-known device that is widely used in various areas of clinical practice. However, some materials used in the drug infuser have been developed for particular purposes and thus, their design characteristics have to be changed considerably. Especially, the implications of a new filler in the drug infuser have migrated to the areas of body corrections in plastic surgery. In this study, the design process of a drug infuser managing a large content volume has been studied from the perspective of structure safety. A new design of the drug infuser that uses a 10 cc filler with high viscosity is presented. Finite element analysis is used to confirm that the assembled drug infuser is safe enough to hold the required loading of 490 N. Furthermore, the final prototype of the drug infuser was successful in reducing the weight up to 400 g without compromising the safety.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.