DOI QR코드

DOI QR Code

Applications of Genetically Modified Tools to Safety Assessment in Drug Development

  • Kay, Hee-Yeon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Wu, Hong-Min (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Seo-In (Daewon Foreign Language High School, WATCH21 Project Team) ;
  • Kim, Sang-Geon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Published : 2010.03.04

Abstract

The process of new drug development consists of several stages; after identifying potential candidate compounds, preclinical studies using animal models link the laboratory and human clinical trials. Among many steps in preclinical studies, toxicology and safety assessments contribute to identify potential adverse events and provide rationale for setting the initial doses in clinical trials. Gene modulation is one of the important tools of modern biology, and is commonly employed to examine the function of genes of interest. Advances in new drug development have been achieved by exploding information on target selection and validation using genetically modified animal models as well as those of cells. In this review, a recent trend of genetically modified methods is discussed with reference to safety assessments, and the exemplary applications of gene-modulating tools to the tests in new drug development were summarized.

Keywords

References

  1. Andre, P., Delaney, S.M., LaRocca, T., Vincent, D., DeGuzman, F., Jurek, M., Koller, B., Phillips, D.R. and Conley, P.B. (2003). P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Invest., 112, 398-406. https://doi.org/10.1172/JCI17864
  2. Birney, E., Bateman, A., Clamp, M.E. and Hubbard, T.J. (2001). Mining the draft human genome. Nature, 409, 827-828. https://doi.org/10.1038/35057004
  3. Caldwell, G.W., Ritchie, D.M., Masucci, J.A., Hageman, W. and Yan, Z. (2001). The new pre-preclinical paradigm: compound optimization in early and late phase drug discovery. Curr. Top. Med. Chem., 1, 353-366. https://doi.org/10.2174/1568026013394949
  4. Chan, K. and Kan, Y.W. (1999). Nrf2 is essential for protection against acute pulmonary injury in mice. Proc. Natl. Acad. Sci. USA, 96, 12731-12736. https://doi.org/10.1073/pnas.96.22.12731
  5. Cheng, X. and Klaassen, C.D. (2008a). Critical role of PPARalpha in perfluorooctanoic acid- and perfluorodecanoic acidinduced downregulation of Oatp uptake transporters in mouse livers. Toxicol. Sci., 106, 37-45. https://doi.org/10.1093/toxsci/kfn161
  6. Cheng, X. and Klaassen, C.D. (2008b). Perfluorocarboxylic acids induce cytochrome P450 enzymes in mouse liver through activation of PPAR-alpha and CAR transcription factors. Toxicol. Sci., 106, 29-36. https://doi.org/10.1093/toxsci/kfn147
  7. Collins, F.S. and McKusick, V.A. (2001). Implications of the Human Genome Project for medical science. JAMA, 285, 540-544. https://doi.org/10.1001/jama.285.5.540
  8. Cui, Y.J., Aleksunes, L.M., Tanaka, Y., Goedken, M.J. and Klaassen, C.D. (2009). Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol. Sci., 110, 47-60. https://doi.org/10.1093/toxsci/kfp094
  9. Debouck, C. and Metcalf, B. (2000). The impact of genomics on drug discovery. Annu. Rev. Pharmacol. Toxicol., 40, 193-207. https://doi.org/10.1146/annurev.pharmtox.40.1.193
  10. Descotes, J. and Testud, F. (2005). Toxicovigilance: a new approach for the hazard identification and risk assessment of toxicants in human beings. Toxicol. Appl. Pharmacol., 207, 599-603. https://doi.org/10.1016/j.taap.2005.02.019
  11. DiMasi, J.A., Hansen, R.W., Grabowski, H.G. and Lasagna, L. (1991). Cost of innovation in the pharmaceutical industry. J. Health. Econ., 10, 107-142. https://doi.org/10.1016/0167-6296(91)90001-4
  12. DiMasi, J.A., Hansen, R.W. and Grabowski, H.G. (2003). The price of innovation: new estimates of drug development costs. J. Health. Econ., 22, 151-185. https://doi.org/10.1016/S0167-6296(02)00126-1
  13. Druker, B.J. and Lydon, N.B. (2000). Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest., 105, 3-7. https://doi.org/10.1172/JCI9083
  14. Enomoto, A., Itoh, K., Nagayoshi, E., Haruta, J., Kimura, T., O'Connor, T., Harada, T. and Yamamoto, M. (2001). High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol. Sci., 59, 169-177. https://doi.org/10.1093/toxsci/59.1.169
  15. Faiola, B., Falls, J.G., Peterson, R.A., Bordelon, N.R., Brodie, T.A., Cummings, C.A., Romach, E.H. and Miller, R.T. (2008). PPAR alpha, more than PPAR delta, mediates the hepatic and skeletal muscle alterations induced by the PPAR agonist GW0742. Toxicol. Sci., 105, 384-394. https://doi.org/10.1093/toxsci/kfn130
  16. Feher, M. and Schmidt, J.M. (2003). Property distributions: differences between drugs, natural products, andmolecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci., 43, 218-227. https://doi.org/10.1021/ci0200467
  17. Fricker, J. (2008). Time for reform in the drug-development process. Lancet. Oncol., 9, 1125-1126. https://doi.org/10.1016/S1470-2045(08)70297-3
  18. Fuchs, H., Tillement, J.P., Urien, S., Greischel, A. and Roth, W. (2009). Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans. J. Pharm. Pharmacol., 61, 55-62. https://doi.org/10.1211/jpp.61.01.0008
  19. Graham, M.J. and Lake, B.G. (2008). Induction of drug metabolism: species differences and toxicological relevance. Toxicology, 254, 184-191. https://doi.org/10.1016/j.tox.2008.09.002
  20. Grieshaber, C.K. and Marsoni, S. (1986). Relation of preclinical toxicology to findings in early clinical trials. Cancer Treat. Rep., 70, 65-72.
  21. Hernando, E., Charytonowicz, E., Dudas, M.E., Menendez, S., Matushansky, I., Mills, J., Socci, N.D., Behrendt, N., Ma, L., Maki, R.G., Pandolfi, P.P. and Cordon-Cardo, C. (2007). The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat. Med., 13, 748-753. https://doi.org/10.1038/nm1560
  22. Ito, Y., Oyunzul, L., Yoshida, A., Fujino, T., Noguchi, Y., Yuyama, H., Ohtake, A., Suzuki, M., Sasamata, M., Matsui, M. and Yamada, S. (2009). Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice. Eur. J. Pharmacol., 615, 201-206. https://doi.org/10.1016/j.ejphar.2009.04.068
  23. Jin, D.K., Shido, K., Kopp, H.G., Petit, I., Shmelkov, S.V., Young, L.M., Hooper, A.T., Amano, H., Avecilla, S.T., Heissig, B., Hattori, K., Zhang, F., Hicklin, D.J., Wu, Y., Zhu, Z., Dunn, A., Salari, H., Werb, Z., Hackett, N.R., Crystal, R.G., Lyden, D. and Rafii, S. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat. Med., 12, 557-567. https://doi.org/10.1038/nm1400
  24. Kirn, D.H. and McCormick, F. (1996). Replicating viruses as selective cancer therapeutics. Mol. Med. Today, 2, 519-527. https://doi.org/10.1016/S1357-4310(97)81456-6
  25. Kirschbaum, K.M., Henken, S., Hiemke, C. and Schmitt, U. (2008). Pharmacodynamic consequences of P-glycoprotein-dependent pharmacokinetics of risperidone and haloperidol in mice. Behav. Brain Res., 188, 298-303. https://doi.org/10.1016/j.bbr.2007.11.009
  26. Kubo, K., Nishikawa, K., Hardy-Yamada, M., Ishizeki, J., Yanagawa, Y. and Saito, S. (2009). Altered responses to propofol, but not ketamine, in mice deficient in the 65-kilodalton isoform of glutamate decarboxylase. J. Pharmacol. Exp. Ther., 329, 592-599. https://doi.org/10.1124/jpet.109.151456
  27. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46, 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
  28. Lord, P.G., Nie, A. and McMillian, M. (2006). The evolution of gene expression studies in drug safety assessment. Toxicol. Mech. Methods, 16, 51-58. https://doi.org/10.1080/15376520600558200
  29. Maher, J.M., Aleksunes, L.M., Dieter, M.Z., Tanaka, Y., Peters, J.M., Manautou, J.E. and Klaassen, C.D. (2008). Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol. Sci., 106, 319-328. https://doi.org/10.1093/toxsci/kfn177
  30. Marsh, S. (2007). Impact of pharmacogenomics on clinical practice in oncology. Mol. Diagn. Ther., 11, 79-82. https://doi.org/10.1007/BF03256226
  31. McCarthy, T.C., Pollak, P.T., Hanniman, E.A. and Sinal, C.J. (2004). Disruption of hepatic lipid homeostasis in mice after amiodarone treatment is associated with peroxisome proliferator- activated receptor-alpha target gene activation. J. Pharmacol. Exp. Ther., 311, 864-873. https://doi.org/10.1124/jpet.104.072785
  32. McKinnon, R.A. and Nebert, D.W. (1998). Cytochrome P450 knockout mice: new toxicological models. Clin. Exp. Pharmacol. Physiol., 25, 783-787. https://doi.org/10.1111/j.1440-1681.1998.tb02153.x
  33. Muller, U., Steinhoff, U., Reis, L.F., Hemmi, S., Pavlovic, J., Zinkernagel, R.M. and Aguet, M. (1994). Functional role of type I and type II interferons in antiviral defense. Science, 264, 1918-1921. https://doi.org/10.1126/science.8009221
  34. Nebeker, J.R., Barach, P. and Samore, M.H. (2004). Clarifying adverse drug events: a clinician's guide to terminology, documentation, and reporting. Ann. Intern. Med., 140, 795-801. https://doi.org/10.7326/0003-4819-140-10-200405180-00017
  35. Ohlstein, E.H., Ruffolo, R.R. Jr and Elliott, J.D. (2000). Drug discovery in the next millennium. Annu. Rev. Pharmacol. Toxicol., 40, 177-191. https://doi.org/10.1146/annurev.pharmtox.40.1.177
  36. O'Quigley, J., Pepe, M. and Fisher, L. (1990). Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics, 46, 33-48. https://doi.org/10.2307/2531628
  37. Paul, J., Seib, R. and Prescott, T. (2005). The Internet and clinical trials: background, online resources, examples and issues. J. Med. Internet. Res., 7, e5. https://doi.org/10.2196/jmir.7.1.e5
  38. Peto, R., Pike, M.C., Armitage, P., Breslow, N.E., Cox, D.R., Howard, S.V., Mantel, N., McPherson, K., Peto, J. and Smith, P.G. (1976). Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br. J. Cancer., 34, 585-612. https://doi.org/10.1038/bjc.1976.220
  39. Phillips, J.M. and Goodman, J.I. (2009). Multiple genes exhibit phenobarbital-induced constitutive active/androstane receptormediated DNA methylation changes during liver tumorigenesis and in liver tumors. Toxicol. Sci., 108, 273-289. https://doi.org/10.1093/toxsci/kfp031
  40. Pineau, I., Sun, L., Bastien, D. and Lacroix, S. (2009). Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain. Behav. Immun., [Epub ahead of print].
  41. Pussard, E., Merzouk, M. and Barennes, H. (2007). Increased uptake of quinine into the brain by inhibition of P-glycoprotein. Eur. J. Pharm. Sci., 32, 123-127. https://doi.org/10.1016/j.ejps.2007.06.007
  42. Pusztai, L. (2007). Limitations of pharmacogenomic predictor discovery in Phase II clinical trials. Pharmacogenomics, 8, 1443-1448. https://doi.org/10.2217/14622416.8.10.1443
  43. Ramos-Gomez, M., Kwak, M.K., Dolan, P.M., Itoh, K., Yamamoto, M., Talalay, P. and Kensler, T.W. (2001). Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. USA, 98, 3410-3415. https://doi.org/10.1073/pnas.051618798
  44. Reisman, S.A., Csanaky, I.L., Aleksunes, L.M. and Klaassen, C.D. (2009a). Altered disposition of acetaminophen in Nrf2-null and Keap1-knockdown mice. Toxicol. Sci., 109, 31-40. https://doi.org/10.1093/toxsci/kfp047
  45. Reisman, S.A., Csanaky, I.L., Yeager, R.L. and Klaassen, C.D. (2009b). Nrf2 activation enhances biliary excretion of sulfobromophthalein by inducing glutathione-S-transferase activity. Toxicol. Sci., 109, 24-30. https://doi.org/10.1093/toxsci/kfp045
  46. Reisman, S.A., Yeager, R.L., Yamamoto, M. and Klaassen, C.D. (2009c). Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species. Toxicol. Sci., 108, 35-47. https://doi.org/10.1093/toxsci/kfn267
  47. Rioux, P.P. (2000). Clinical trials in pharmacogenetics and pharmacogenomics: methods and applications. Am. J. Health Syst. Pharm., 57, 887-898.
  48. Ryan, T.P., Stevens, J.L. and Thomas, C.E. (2008). Strategic applications of toxicogenomics in early drug discovery. Curr. Opin. Pharmacol., 8, 654-660. https://doi.org/10.1016/j.coph.2008.07.011
  49. Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Control. Clin. Trials., 10, 1-10. https://doi.org/10.1016/0197-2456(89)90015-9
  50. Stewart, J.J., Allison, P.N. and Johnson, R.S. (2001). Putting a price on biotechnology. Nat. Biotechnol., 19, 813-817. https://doi.org/10.1038/nbt0901-813
  51. Tanaka, Y., Aleksunes, L.M., Cui, Y.J. and Klaassen, C.D. (2009). ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol. Sci., 108, 247-257. https://doi.org/10.1093/toxsci/kfp020
  52. Thomas, K.R. and Capecchi, M.R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51, 503-512. https://doi.org/10.1016/0092-8674(87)90646-5
  53. Ulrich, R. and Friend, S.H. (2002). Toxicogenomics and drug discovery: will new technologies help us produce better drugs? Nat. Rev. Drug Discov., 1, 84-88. https://doi.org/10.1038/nrd710
  54. Valenta, R. (2002). The future of antigen-specific immunotherapy of allergy. Nat. Rev. Immunol., 2, 446-453. https://doi.org/10.1038/nri824
  55. Wang, S., Sim, T.B., Kim, Y.S. and Chang, Y.T. (2004). Tools for target identification and validation. Curr. Opin. Chem. Biol., 8, 371-377. https://doi.org/10.1016/j.cbpa.2004.06.001
  56. Weinshilboum, R. (2003). Inheritance and drug response. N. Engl. J. Med., 348, 529-537. https://doi.org/10.1056/NEJMra020021
  57. Woodcock, J. and Woosley, R. (2008). The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med., 59, 1-12. https://doi.org/10.1146/annurev.med.59.090506.155819
  58. Yoshizato, K. and Tateno, C. (2009). A human hepatocyte-bearing mouse: an animal model to predict drug metabolism and effectiveness in humans. PPAR Res., 2009, 476217.