• Title/Summary/Keyword: Neutron transport

Search Result 177, Processing Time 0.03 seconds

Improving the Neutronic Characteristics of a Boiling Water Reactor by Using Uranium Zirconium Hydride Fuel Instead of Uranium Dioxide Fuel

  • Galahom, Ahmed Abdelghafar
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.751-757
    • /
    • 2016
  • The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide ($UO_2$) and uranium zirconium hydride ($UZrH_{1.6}$) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with $UO_2$ contains $8{\times}8$ fuel rods while that fueled with $UZrH_{1.6}$ contains $9{\times}9$ fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. $UZrH_{1.6}$ fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

Experimental Determination of Differential Fast Neutron Spectra in a Reactor using Threshold Detectors

  • Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.280-293
    • /
    • 1972
  • The differential fast neutron spectra above 0.5 Mev at particular spatial positions in tile reactor(TRIGA MARK-II) core has been determined experimentally using several threshold activation detectors. The series expansion technique utilizing the concept of least squares optimization was used to obtain an approximate solution to the set of integral equations which are defined by the experimentally determined activation data. The influence of use of different weighting functions in the solution was analyzed in each measurement. To carry out the necessary mathematical calculations, a computer code for the UNIVAC 1106 digital computer has been prepared. Good agreement was achieved between the differential fast neutron spectra determined in this work and the computed flux determined independently using space-independent multigroup transport theory.

  • PDF

Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.43-54
    • /
    • 2016
  • In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor cores. In addition, validation of the calculations against the $P_1$ approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

Structural Concept Design of KALIMER-600 Sodium Cooled Fast Reactor (소듐냉각 고속로 KALIMER-600 원자로 구조 개념설계)

  • Lee, Jae-Han;Park, Chang-Gyu;Kim, Jong-Bum;Koo, Gyeong-Hoi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.285-290
    • /
    • 2007
  • KALIMER-600 is a sodium cooled fast reactor with a fast spectrum neutron reactor core. The NSSS design has three heat transport systems of a PHTS (Primary Heat Transport System), a IHTS (Intermediate Heat Transport System) and a SGS (Steam Generation System). PHTS is a pool type and has a large amount of sodium in the pool. The mechanical design targets are maintaining the enough structural integrity for a seismic load of SSE 0.3g and the thermal and mechanical loads by the high temperature environments and an economical competitiveness when compared with other reactor types.

  • PDF

Modelling atomic relaxation and bremsstrahlung in the deterministic code STREAM

  • Nhan Nguyen Trong Mai;Kyeongwon Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.673-684
    • /
    • 2024
  • STREAM, developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST), is a deterministic neutron- and photon-transport code primarily designed for light water reactor (LWR) analysis. Initially, the photon module in STREAM did not account for fluorescence and bremsstrahlung photons. This article presents recent developments regarding the integration of atomic relaxation and bremsstrahlung models into the existing photon module, thus allowing for the transport of secondary photons. The photon flux and photon heating computed with the newly incorporated models is compared to results obtained with the Monte Carlo code MCS. The incorporation of secondary photons has substantially improved the accuracy of photon flux calculations, particularly in scenarios involving strong gamma emitters. However, it is essential to note that despite the consideration of secondary photon sources, there is no noticeable improvement in the photon heating for LWR problems when compared to the photon heating obtained with the previous version of STREAM.

Conceptual Study of Fusion-Fission Hybrid Reactor for Transmutation of a Nuclear Waste

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.670-670
    • /
    • 2013
  • The concept of a fusion-driven transmutation reactor based on LAR (Low Aspect Ratio) tokamak as a neutron source is studied based on ITER physics and technology. The radial build of transmutation reactor components are self-consistently determined by coupling the systems analysis with radiation transport analysis and an optimal configuration of a transmutation reactor for aspect ratio, A in the range of 1.5 to 2.0 is found. The performance of a transmutation reactor is investigated and shows that a transmutation reactor with a neutron source producing fusion power less than 150 MW can destroy the transuranic actinides contained in the spent fuels produced from more than two 1 GWe PWRs with production of the fission power being greater than 2 GW.

  • PDF

Design of a Mixed-Spectrum Reactor With Improved Proliferation Resistance for Long-Lived Applications

  • Abou-Jaoude, Abdalla;Erickson, Anna;Stauff, Nicolas
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.359-367
    • /
    • 2018
  • Long-lived Small Modular Reactors are being promoted as an innovative way of catering to emerging markets and isolated regions. They can be operated continuously for decades without requiring additional fuel. A novel configuration of long-lived reactor core employs a mixed neutron spectrum, providing an improvement in nonproliferation metrics and in safety characteristics. Starting with a base sodium reactor design, moderating material is inserted in outer core assemblies to modify the fast spectrum. The assemblies are shuffled once during core lifetime to ensure that every fuel rod is exposed to the thermalized spectrum. The Mixed Spectrum Reactor is able to maintain a core lifetime over two decades while ensuring the plutonium it breeds is below the weapon-grade limit at the fuel discharge. The main drawbacks of the design are higher front-end fuel cycle costs and a 58% increase in core volume, although it is alleviated to some extent by a 48% higher power output.

Transmutation Characteristics of Transuranics in a Transmutation Reactor Based on Low Aspect Ratio Toka

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.456.1-456.1
    • /
    • 2014
  • Transmutation characteristics of transuranics (TRU) in a transmutation reactor based on LAR (Low Aspect Ratio) tokamak as a neutron source are investigated. Optimum radial build of a transmutation reactor is found by coupled analysis of the tokamak systems and the neutron transport. The dependence of the transmutation characteristics on an aspect ratio, A in the range of 1.5 to 2.5, and on a fusion power in the range of 150 MW to 500 MW are investigated. Equilibrium fuel cycle is developed for effective transmutation and it is shown that with one unit of the transmutation reactor based on the LAR tokamak producing fusion power in the range of a few hundred MW, up to 3 PWRs (1.0 GWe capacity) can be supported with the burn-up fraction bigger than 50%.

  • PDF

Neutron Dose Rate Analysis of PWR Spent Fuel Transport Cask Using Monte Carlo Method

  • Do, Mahnsuck;Kim, Jong-Kyung;Yoon, Jeong-Hyoun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.847-852
    • /
    • 1995
  • A shielding analysis for KSC-7, the shipping cask for transporting the 7 PWR spent fuel assemblies, has been carried out. Radiation source term has been calculated on spent fuel with burnup of 50,000 MWD/MTU and 1.5 years cooling time by ORIGEN2 code. The shielding calculation for the cask has been made by using MCNP4A code with continuous cross section data library from ENDF/B-V. As a result of neutron dose rate analysis, another shielding calculational model on spent fuel shipping cask was provided which is using the Monte Carlo method.

  • PDF

Development of Neutron Skyshine Evaluation Method for High Energy Electron Accelerator Using Monte Carlo Code (몬테카를로 코드를 이용한 고에너지 전자가속기의 중성자 skyshine 평가방법 개발)

  • Oh, Joo-Hee;Jung, Nam-Suk;Lee, Hee-Seock;Ko, Seung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • The skyshine effect is an essential and important phenomenon in the shielding design of the high energy accelerator. In this study, a new estimation method of neutron skyshine was proposed and was verified by comparison with existing methods. The effective dose of secondary neutrons and photons at the locations that was far away from high-energy electron accelerator was calculated using FLUKA and PHITS Monte Carlo code. The transport paths of secondary radiations to reach a long distance were classified as skyshine, direct, groundshine and multiple-shine. The contribution of each classified component to the total effective dose was evaluated. The neutrons produced from the thick copper target irradiated by 10 GeV electron beam was applied as a source term of this transport. In order to evaluate a groundshine effect, the composition of soil on the PAL-XFEL site was considered. At a relatively short distance less than 50 m from the accelerator tunnel, the direct and groundshine components mostly contributed to the total effective dose. The skyshine component was important at a long distance. The evaluated dose of neutron skyshine agreed better with the results using Rindi's formula, which was based on the experimental results at high energy electron accelerator. That also agreed with the estimated dose using the simple evaluation code, SHINE3, within about 20%. The total effective dose, including all components, was 10 times larger than the estimated doses using other methods for this comparison. The influence of multiple-shine path in this evaluation of the estimation method was investigated to be bigger than one of pure skyshine path.