DOI QR코드

DOI QR Code

Development of Neutron Skyshine Evaluation Method for High Energy Electron Accelerator Using Monte Carlo Code

몬테카를로 코드를 이용한 고에너지 전자가속기의 중성자 skyshine 평가방법 개발

  • Received : 2013.02.25
  • Accepted : 2013.03.18
  • Published : 2013.03.30

Abstract

The skyshine effect is an essential and important phenomenon in the shielding design of the high energy accelerator. In this study, a new estimation method of neutron skyshine was proposed and was verified by comparison with existing methods. The effective dose of secondary neutrons and photons at the locations that was far away from high-energy electron accelerator was calculated using FLUKA and PHITS Monte Carlo code. The transport paths of secondary radiations to reach a long distance were classified as skyshine, direct, groundshine and multiple-shine. The contribution of each classified component to the total effective dose was evaluated. The neutrons produced from the thick copper target irradiated by 10 GeV electron beam was applied as a source term of this transport. In order to evaluate a groundshine effect, the composition of soil on the PAL-XFEL site was considered. At a relatively short distance less than 50 m from the accelerator tunnel, the direct and groundshine components mostly contributed to the total effective dose. The skyshine component was important at a long distance. The evaluated dose of neutron skyshine agreed better with the results using Rindi's formula, which was based on the experimental results at high energy electron accelerator. That also agreed with the estimated dose using the simple evaluation code, SHINE3, within about 20%. The total effective dose, including all components, was 10 times larger than the estimated doses using other methods for this comparison. The influence of multiple-shine path in this evaluation of the estimation method was investigated to be bigger than one of pure skyshine path.

Skyshine은 고에너지 가속기의 차폐 설계 시 반드시 고려되는 중요한 현상이다. 본 연구에서는 고에너지 전자 가속기에 대한 중성자 skyshine 평가 방법을 새롭게 제시하였으며 기존의 방법들과 비교하여 타당성을 검증하였다. 고에너지 전자가속기로부터 원거리 지역의 방사선량을 계산하기 위해 몬테카를로 코드, FLUKA와 PHITS를 이용하였다. 가속기 건물로부터 원거리 지역까지 도달하는 방사선장의 경로를 skyshine, direct, groundshine, multiple-shine으로 분류하였다. 분류된 각각의 성분이 총 유효선량에 기여하는 정도를 평가하였다. 방사선원 계산에는 10 GeV 전자가 두꺼운 표적에 입사하여 생성되는 중성자를 고려하였다. Groundshine 효과를 평가하기위해 PAL-XFEL의 건설부지토양에 대한 성분을 고려하였다. 가속기 건물로부터 비교적 가까운 50 m 미만에서는 direct와 groundshine 성분들이 총 유효선량에 대부분 기여하였다. 가속기 터널로부터 거리가 멀어질수록 skyshine 성분의 기여도가 증가하였다. 평가된 skyshine 성분에 대한 유효선량은 기존에 skyshine 선량을 계산할 때 사용되었던 반실험식 중 전자가속기를 이용한 실험결과에 기반한 Rindi의 식과 가장 잘 일치하였다. 간이계산코드 SHINE3의 결과와 20% 이내로 일치하였다. 모든 성분이 포함된 총 유효선량은 기존의 평가방식에 비해 10배 정도 크게 평가되었다. 가속기 터널로부터 원거리 지역에 대한 선량평가계산에서 mutiple-shine 성분의 영향은 skyshine 성분보다 더 크다는 것을 확인하였다.

Keywords

References

  1. Jenkins TM, Accelerator boundary doses and skyshine. Health phys. 1974;27(3):241.
  2. Stapleton GB, O'brien K, Thomas RH, Accelerator skyshine: tyger, tyger, burning bright. Particle Accelerators. 1994;44(1): 1-15.
  3. Rindi A, Thomas RH, Skyshine-a paper tiger. part Accel. 1975;7:23-39.
  4. Stevenson GR, Thomas RH, A simple procedure for the estimation of neutron skyshine from proton accelerators. Health Phys. 1984;42:115-122.
  5. Masukawa F, Abe T, Hayashi K, Handa H, Nakashima H, Development of SHINE3, simple code for high-energy neutron skyshine dose evaluation. JAEA. Data. Code. 2006:103P.
  6. Iwase H, Nitta K, Nakamura T, Development of general-purpose particle and heavy ion transport monte carlo code. J. Nucl. Sci. Technol. 2002;39:1442.
  7. Harima Y, Hirayama H, Sakamoto Y, Shimizu A, A simplified method of gamma-ray skyshine calculations. Prc. of ICRS8. 1994:939.
  8. Ferrari A, Sala PR, Fasso A, Ranft J, FLUKA: a multi-particle transport code. CERN- 2005-10. CERN. 2005.
  9. Soil Survey of Site Report for 4th Generation Light Source Construction Design. PAL- XFEL. Pohang Accelerator Laboratory. 2011.
  10. Moe HJ, Advanced photon source: radiological design considerations. APS-LS-141. Argonne national laboratory. 1991.
  11. Nakagawa T, Shibata K, Chiba S, Fukahori T, Nakajima Y, Kikuchi Y, Kawano T, Kanda Y, Ohsawa T, Matsunobu H, Kawai M, Zukeran A, Watanabe T, Igarasi S, Kosako K, Asami T, Japanese evaluated nuclear data library, version 3 revision-2; JENDL-3.2. J. Nucl. Sci. Technol. 1995;32:1259. https://doi.org/10.1080/18811248.1995.9731849
  12. Niita K, Chiba S, Maruyama T, Maruyama T, Takada H, Fukahori T, Nakahara Y, Iwamoto A, Analysis of the (N,xN') reactions by quantum molecular dynamics plus statistical decay model. Phys Rev. C. 1995;52:2620. https://doi.org/10.1103/PhysRevC.52.2620
  13. Sakamoto Y, Dose conversion coefficients in the shielding design calculation for high energy proton accelerator facilities. JAERI- Tech. 2001;42.
  14. Pelliccioni M, Overview of fluence-to -effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the Fluka code. Radiat. Prot. Dosim. 2000;88:279-297. https://doi.org/10.1093/oxfordjournals.rpd.a033046
  15. Bathow G, Clausen V, Freytag E, Tesch K, Skyshine-Messungen und ihr Vergleich mit Abshatzungen, aus der diffsionstherorie. Nucleoni. 1967;9:14.

Cited by

  1. Radiation shielding design of the PAL-XFEL vol.66, pp.3, 2015, https://doi.org/10.3938/jkps.66.425