• Title/Summary/Keyword: Neutron activation method

Search Result 96, Processing Time 0.025 seconds

An Improved Method for the Determination of Scandium by Neutron Activation Analysis (스칸듐定量을 위한 改良된 放射化分析法)

  • Chung, Koo-Soon;Lee, Chul
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-91
    • /
    • 1964
  • A rapid and simple method is described here for the determination of scandium in monazite by neutron activation analysis. The sample is irradiated for 20 hours at the neutron flux of $10^{12}$ thermal neutrons/$cm^2$/sec in the TRIGA MARK Ⅱ reactor, after which the sample is decomposed by fusion with concentrated sulfuric acid. The scandium-46 together with scandium carrier are separated from the irradiated sample by precipitating with ammonia, and are extracted by solvent extraction of the thiocyanate complex into ether. The induced radioactivity is measured by gamma scintillation spectrometry using the Multichannel Pulse Height Analyzer connected with 2"${\times}$2" NaI(Tl). The chemical yield is determined gravimetrically by precipitating scandium with mandelic acid. In order to check the efficiency of scandium separation and the errors from interfering activities of the other elements, scandium was separated by the cation exchange resin column, and the results from both samples were compared each other, which showed that the chemical procedure used in this work was as selective as the ion-exchange method with respect to scandium separation. The scandium contents in Korean monazite were found to be about 12 p. p. m.

  • PDF

AN EXPERIMENTAL STUDY ON THE MEASUREMENT OF MARGINAL LEAKAGE USING A RADIOACTIVITY (충전후 방사능에 의한 변연누출 측정에 관한 실험적 연구)

  • Kim, Mi-Ja;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 1988
  • The study was designed to establish a more nearly quantitative method for assessing the marginal leakage of dental restorations. 27 Class V cavities with $45^{\circ}$ bevel joint were prepared and classified into 2 groups. One group was filled with Scotchbond and silux. The other group was filled with glass ionomer cement, Scotchbond and silux. After finishing, all specimens were subjected manually to 100 thermal cycles at $0^{\circ}C$ and $100^{\circ}C$ water-bath. They were soaked in a samarium nitrate solution for 3 hours, irradiated with flux of $6{\times}10^{12}$ neutrons/$cm^2$/sec for 11 hours, cooled for 200 hours, counted with the HPGE detector and the tracer uptake was determined by comparison with a standard of samarium (10 ${\mu}g$). The following results were obtained. 1. Both of the two groups showed a considerable amounts of marginal leakage. 2. The group filled without glass ionomer cement base showed more marginal leakage than the group filled with glass ionomer cement base. 3. Neutron Activation Analysis produced a good quantitative method to measure the marginal leakage and samarium was appropriate to measure the marginal leakage of resin restorations using neutron activation analysis.

  • PDF

Study on the Isomeric Ratio by Thermal Neutron Activation

  • Bak, Hae-Ill
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.89-96
    • /
    • 1974
  • The cross-section ratios of the nuclear isomeric pairs $^{80}$ B $r^{m, g}$, sup 81/S $e^{m, g}$, $^{104}$ R $h^{m, g}$, $^{116}$ I $n^{m, g}$ and $^{134}$ C $s^{m, g}$ through the radiative thermal neutron capture process have been studied. The experimental values of these ratios obtained by the activation method have been compared with the calculated ones deduced from the modified Huizenga-Vandenbosch method. Agreement between these values within 30% could be attained by controlling the spin cut-off parameter and gamma-ray multiplicity.

  • PDF

Optimizing irradiation conditions for natural molybdenum in WWR-K reactor

  • D.S. Sairanbayev;Sh. Kh. Gizatulin;A.N. Gurin;Ye. T. Chakrova;M.T. Aitkulov;A. Zh. Nessipbay;A. Ch. Ashibayev;A.A. Shaimerdenov
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3566-3570
    • /
    • 2024
  • The production of the radioisotope molybdenum-99 in the WWR-K research reactor is achieved through the activation method 98Mo(n,γ)99Mo, utilizing a target of natural molybdenum trioxide irradiated under standard conditions (thermal neutron spectra and water environment). Under such conditions, the maximum specific activity of molybdenum-99 reaches (2.3 ± 0.3) Ci/g Mo after 7 d of irradiation. However, the escalating demand for molybdenum-99 and the need to reduce its production cost, necessitates urgent and increased productivity. This study aims to optimize the irradiation conditions for molybdenum powder in the WWR-K reactor to increase the specific activity of molybdenum-99. For this purpose, we evaluated various irradiation capsule designs comprised various neutron moderator materials and thicknesses. Through extensive modeling calculations, we obtained an optimal capsule design that increases the specific activity of molybdenum-99 to 3.31 Ci per 1 g of Mo.

A Single Comparator Method Using Reactor Neutron and Its Errors (원자로 중성자를 이용한 단일 비교체법과 오차)

  • Nak Bae Kim;Keung Shik Park;Hae-Ill Bak
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 1986
  • A single comparator method with its accuracy has been studied for determining multielement by reactor neutron activation analysis. Spectral index at the irradiation position of each sample was determined using two flux monitors of Au and Co, one of which was used as a single comparator. The uncertainties of nuclear data related to the method were investigated for 18 elements and the error of the analytical result due to the uncertainties of nuclear data related is found to be less than 6%. The analytical results of 4 USGS reference samples agree well within 15% deviation with the results evaluated by USGS.

  • PDF

Evaluating Activation for 50 MeV Cyclotron Irradiation Service using Monte Carlo Method and Inventory Code (50 MeV 사이클로트론 조사 서비스로 인한 방사화 평가)

  • Kim, Sangrok;Kim, Gi-sub;Heo, Jaeseung;Ahn, Yunjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.415-427
    • /
    • 2021
  • Korea Institute of Radiological and Medical Sciences has provided various beam irradiation services to researchers using a 50 MeV cyclotron beam line. In particular, since the neutron beam service uses the nuclear reaction between protons and beryllium, the possibility of activation of the irradiated sample increases by using a high current. In this study, MCNP 6.2 and FISPACT-II 4.0 were used to evaluate the possible activation during the 35 MeV 20 ㎂ neutron beam service, which is preferred by the researchers. As a result of the calculation, if the iron, copper, and tungsten samples were irradiated for more than 1 hour, long-lived radioisotopes were produced and their radioactivity exceeded the standard level for self-disposal. Under the conditions of 2 hours of daily irradiation, no activation occurred in the building materials, and the internal exposure of workers due to air activation inside the irradiation room was very insignificant. And when this air was discharged to environment, the radioactivity including this air was also satisfied the emission standard.

Determination of Trace Impurities in High Purity Aluminum by Instrumental Neutron Activation Analysis (고순도알루미늄의 비파괴 중성자방사화분석)

  • Cho, Seung-Yeon;Kim, Young-Kuk;Chung, Yong-Sam
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.163-167
    • /
    • 1992
  • Nondestructive neutron activation analysis of copper in high purity Aluminum samples which can be used as a parameter of impurity is investigated and determined. Other 23 trace impurity elements in the samples are also determined. In the analysis of copper, the new irradiation method using thermal column was applied to reduce the interfering activity of 24Na produced by 27Al(n,$\alpha$)24Na reaction induced by fast neutron. As a result, the interference can be reduced to 100 times more than other activation methods. Also the influence by activity of 24Na is found in the range of 2~3 %. It has been observed that the copper contents in so-ratted“six nine”class standard aluminum samples are about 0.54 $\pm$ 0.08 ppm. By the comparison with other values re-ported, our results are reasonable and can be available as a improved routine analysis.

  • PDF

A Study on the Neoasozine Residues in Rice Grain by Neutron Activation Method (방사화(放射化) 분석법(分析法)에 의한 미곡(米穀)중 네오아소진 잔류분(殘留分)에 관한 연구(硏究))

  • Kim, Yong-Hwa;Lee, Koon-Ja;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-24
    • /
    • 1981
  • Residues of neoasozine in rice grain were determined by neutron activation and colorimetric techniques. Twice application of the chemical before flowering did not lead to any increased residue level while 4-times application resulted in significant increase in the residue level up to 0.54-0.75 mg $As_2O_3/kg$. The partition ratio of arsenic residues into polished rice grain and bran was 73 : 27 in 100% polishing while most of the residues in the bran was transferred to oil cake fraction during solvent extraction, reaching up to 2.9 mg $As_2O_3/kg$. The neutron activation technique was advantageous because of its high sensitivity and the smaller sample amounts required for analysis.

  • PDF

Determination of trace actinide (Am, Pu, Th, U) using alpha spectrometry and neutron activation analysis (알파분광법과 중성자방사화분석법에 의한 극미량의 악티늄계원소 (Am, Pu, Th, U)분석연구)

  • Yoon, Yoon Yeol;Lee, Kil Yong;Cho, Soo Young;Kim, Yongjai;Lee, Myong Ho
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2004
  • Determination of actinides in the environmental sample requires separation of each element. This procedure is tedious and time consuming. And also, the detection limits of some nuclides using alpha spectrometry are rather higher. To overcome the lower detection limit and complicated separation procedure, a simple analytical technique for the determination of actinide isotopes in the environmental samples was developed and applied to IAEA and NIST reference sediment samples. For the separation of actinides from matrix, anion exchange resin and TRU-spec extraction chromatography resin were used and chemical yields were obtained using natural uranium, thorium, $^{242}Pu$ and $^{243}Am$ tracers. For overcoming the higher detection limits of U and Th in alpha spectrometry, neutron activation analysis was applied. Using combined method, the detection limit was increased about 10 times. The activity values of each isotope were consistent with the reference values reported by IAEA and NIST.