• Title/Summary/Keyword: Neutron Moderator

Search Result 61, Processing Time 0.025 seconds

A Study on Cooling of the CNS Moderator in HANARO (하나로 냉중성자원 감속재의 냉강에 대한 연구)

  • 박국남;박종학;조만순;최창웅;유성연
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.177-181
    • /
    • 1999
  • Cold Neutron Source(CNS) facility comprises moderator circulation system, helium cooling system, neutron guide and auxiliary sistems. To increase the amount of cold neutron, the thermal neutron should pass cold moderator at cryogenic temperature. As cold moderator in Hanaro, the liquid hydrogen or liquid deuterium will be used and the temperature in operation will be used and the temperature in operation will be maintained to be $250^{\circ}C$ below zero. To maintain the moderator at this cryogenic temperature. He refrigerator is used to cool it down in thermosiphon having natural circulation. As a part of the conceptual design of Hanaro CNS, study on the characteristics of moderators, design of moderator chanmber and cooling method were done through the collaboration of Korea Atomic Energy Research Institute and Petersburg Nuclear Physics Institute. During the collaboration, a program for the design of moderator cooling system design concept through the parametric study using this program. In the parametric study, the effect of the moderator type on the design parameters was investigated. Also, the requirements on the performance test for the cooling system, which will be made before the basic design, were investigated.

  • PDF

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil;Kim, Jongyul;Lee, Eunjoong;Moon, Myungkook;Cho, Sangjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2020
  • Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

VARIATION OF NEUTRON MODERATING POWER ON HDPE BY GAMMA RADIATION

  • Park, Kwang-June;Ju, June-Sik;Kang, Hee-Young;Shin, Hee-Sung;Kim, Ho-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a $^{60}Co$ source to a level of $10^5-10^9$ rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the $10^5$ rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study.

Optimization of target, moderator, and collimator in the accelerator-based boron neutron capture therapy system: A Monte Carlo study

  • Cheon, Bo-Wi;Yoo, Dohyeon;Park, Hyojun;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Hong, Bong Hwan;Chung, Heejun;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1970-1978
    • /
    • 2021
  • The aim of this study was to optimize the target, moderator, and collimator (TMC) in a neutron beam generator for the accelerator-based BNCT (A-BNCT) system. The optimization employed the Monte Carlo Neutron and Photon (MCNP) simulation. The optimal geometry for the target was decided as the one with the highest neutron flux among nominates, which were called as angled, rib, and tube in this study. The moderator was optimized in terms of consisting material to produce appropriate neutron energy distribution for the treatment. The optimization of the collimator, which wrapped around the target, was carried out by deciding the material to effectively prevent the leakage radiations. As results, characteristic of the neutron beam from the optimized TMC was compared to the recommendation by the International Atomic Energy Agent (IAEA). The tube type target showed the highest neutron flux among nominates. The optimal material for the moderator and collimator were combination of Fluental (Al203+AlF3) with 60Ni filter and lead, respectively. The optimized TMC satisfied the IAEA recommendations such as the minimum production rate of epithermal neutrons from thermal neutrons: that was 2.5 times higher. The results can be used as source terms for shielding designs of treatment rooms.

A REVIEW OF NEUTRON SCATTERING CORRECTION FOR THE CALIBRATION OF NEUTRON SURVEY METERS USING THE SHADOW CONE METHOD

  • KIM, SANG IN;KIM, BONG HWAN;KIM, JANG LYUL;LEE, JUNG IL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.939-944
    • /
    • 2015
  • The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a $^{252}Californium$ ($^{252}Cf$) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1-9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.

Design Considerations on the Standby Cooling System for the integrity of the CNS-IPA

  • Choi, Jungwoon;Kim, Young-ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.104-104
    • /
    • 2015
  • Due to the demand of the cold neutron flux in the neutron science and beam utilization technology, the cold neutron source (CNS) has been constructed and operating in the nuclear research reactor all over the world. The majority of the heat load removal scheme in the CNS is two-phase thermosiphon using the liquid hydrogen as a moderator. The CNS moderates thermal neutrons through a cryogenic moderator, liquid hydrogen, into cold neutrons with the generation of the nuclear heat load. The liquid hydrogen in a moderator cell is evaporated for the removal of the generated heat load from the neutron moderation and flows upward into a heat exchanger, where the hydrogen gas is liquefied by the cryogenic helium gas supplied from a helium refrigeration system. The liquefied hydrogen flows down to the moderator cell. To keep the required liquid hydrogen stable in the moderator cell, the CNS consists of an in-pool assembly (IPA) connected with the hydrogen system to handle the required hydrogen gas, the vacuum system to create the thermal insulation, and the helium refrigeration system to provide the cooling capacity. If one of systems is running out of order, the operating research reactor shall be tripped because the integrity of the CNS-IPA is not secured under the full power operation of the reactor. To prevent unscheduled reactor shutdown during a long time because the research reactor has been operating with the multi-purposes, the introduction of the standby cooling system (STS) can be a solution. In this presentation, the design considerations are considered how to design the STS satisfied with the following objectives: (a) to keep the moderator cell less than 350 K during the full power operation of the reactor under loss of the vacuum, loss of the cooling power, loss of common electrical power, or loss of instrument air cases; (b) to circulate smoothly helium gas in the STS circulation loop; (c) to re-start-up the reactor within 1 hour after its trip to avoid the Xenon build-up because more than certain concentration of Xenon makes that the reactor cannot start-up again; (d) to minimize the possibility of the hydrogen-oxygen reaction in the hydrogen boundary.

  • PDF

Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

  • Didi, Abdessamad;Dadouch, Ahmed;Jai, Otman;Tajmouati, Jaouad;Bekkouri, Hassane El
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.787-791
    • /
    • 2017
  • Americium-beryllium (Am-Be; n, ${\gamma}$) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

Neutron dosimetry with a pair of TLDs for the Elekta Precise medical linac and the evaluation of optimum moderator thickness for the conversion of fast to thermal neutrons

  • Marziyeh Behmadi;Sara Mohammadi;Mohammad Ehsan Ravari;Aghil Mohammadi;Mahdy Ebrahimi Loushab;Mohammad Taghi Bahreyni Toossi;Mitra Ghergherehchi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.753-761
    • /
    • 2024
  • Introduction: In this study, TLD 600 and TLD 700 pairs were used to measure the neutron dose of Elekta Precise medical linac. To this end, the optimum moderate thickness for the conversion of fast to thermal neutrons were evaluated. Materials and methods: 241Am-Be and 252Cf sources were simulated to calculate the optimum thicknesses of the moderator for the conversion of maximum fast neutrons (FN) into thermal neutrons (TN). Pair TLDs were used to measure F&TN doses for three different field sizes at four depths of the medical linac. Results: The maximum thickness of the moderator was optimized at 6 cm. The measurement results demonstrated that the TN dose increased with the expansion of field size and depth. The FN dose, which was converted TN, exhibits behaviors comparable to the TN due to its nature. Conclusion: This study presents the optimum thickness for the moderator to convert FN into TN and measure F&TN using TLDs.

Assembly Neutron Moderation System for BNCT Based on a 252Cf Neutron Source

  • Gheisari, Rouhollah;Mohammadi, Habib
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.101-105
    • /
    • 2018
  • In this paper, a neutron moderation system for boron neutron capture therapy (BNCT) based on a $^{252}Cf$ neutron source is proposed. Different materials have been studied in order to produce a high percentage of epithermal neutrons. A moderator with a construction mixture of $AlF_3$ and Al, three reflectors of $Al_2O_3$, BeO, graphite, and seven filters (Bi, Cu, Fe, Pb, Ti, a two-layer filter of Ti+Bi, and a two-layer filter of Ti+Pb) is considered. The MCNPX simulation code has been used to calculate the neutron and gamma flux at the output window of the neutronic system. The results show that the epithermal neutron flux is relatively high for four filters: Ti+Pb, Ti+Bi, Bi, and Ti. However, a layer of Ti cannot reduce the contribution of ${\gamma}$-rays at the output window. Although the neutron spectra filtered by the Ti+Bi and Ti+Pb overlap, a large fraction of neutrons (74.95%) has epithermal energy when the Ti+Pb is used as a filter. However, the percentages of the fast and thermal neutrons are 25% and 0.5%, respectively. The Bi layer provides a relatively low epithermal neutron flux. Moreover, an assembly configuration of 30% $AlF_3+70%$ Al moderator/$Al_2O_3$ reflector/a two-layer filter of Ti+Pb reduces the fast neutron flux at the output port much more than other assembly combinations. In comparison with a recent model suggested by Ghassoun et al., the proposed neutron moderation system provides a higher epithermal flux with a relatively low contamination of gamma rays.

A Design on neutron absorber and moderator for the content measurement of Asphalt (아스팔트 함량 측정을 위한 중성자 흡수체 및 감속재 설계)

  • Kim Ki-Joon
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • In Korea, under the influence of the jurisdiction, usage of radioisotopes are limited. The limitation is $100[{\mu}Ci]$ or less. Therefore, in this study, basic data were designed, and the following data are needed in order to improve content measuring instrument which is suitable for radioisotopes limitation. Owing to the source and detector's properties, measuring instrument was designed geometrically, neutron and photon's particle transportation was analysed by using the MCNP code which is in Monte Carlo Method, also the location of source and detectors, geometrical structure of neutron absorber and moderator was designed.

  • PDF