• Title/Summary/Keyword: Neutron Detection

Search Result 124, Processing Time 0.02 seconds

Efficiency calculation of the nMCP with 10B doping based on mathematical models

  • Yang, Jianqing;Zhou, Jianrong;Zhang, Lianjun;Tan, Jinhao;Jiang, Xingfen;Zhou, Jianjin;Zhou, Xiaojuan;Hou, Linjun;Song, Yushou;Sun, XinLi;Zhang, Quanhu;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2364-2370
    • /
    • 2021
  • The nMCP (Neutron sensitive microchannel plate) combined with advanced readout electronics is widely used in energy selective neutron imaging because of its good spatial and timing resolution. Neutron detection efficiency is a crucial parameter for the nMCP. In this paper, a mathematical model based on the oblique cylindrical channel and elliptical pore was established to calculate the neutron absorption probability, the escape probability of charged particles and overall detection efficiency of nMCP and analyze the effects of neutron incident position, pore diameter, wall thickness and bias angle. It was shown that when the doping concentration of the nMCP was 10 mol%, the thickness of nMCP was 0.6 mm, the detection efficiency could reach maximum value, about 24% for thermal neutrons if the pore diameter was 6 ㎛, the wall thickness was 2 ㎛ and the bias angle was 3 or 6°. The calculated results are of great significance for evaluating the detection efficiency of the nMCP. In a subsequent companion paper, the mathematical model would be extended to the case of the spatial resolution and detection efficiency optimization of the coating nMCP.

Monte-Carlo simulation for detecting neutron and gamma-ray simultaneously with CdZnTe half-covered by gadolinium film

  • J. Byun ;J. Seo ;Y. Kim;J. Park;K. Shin ;W. Lee ;K. Lee ;K. Kim;B. Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1031-1035
    • /
    • 2023
  • Neutron is an indirectly ionizing particle without charge, which is normally measured by detecting reaction products. Neutron detection system based on measuring gadolinium-converted gamma-rays is a good way to monitor the neutron because the representative prompt gamma-rays of gadolinium have low energies (79, 89, 182, and 199 keV). Low energy gamma-rays and their high attenuation coefficient on materials allow the simple design of a detector easier to manufacture. Thus, we designed a cadmium zinc telluride detector to investigate feasibility of simultaneous detection of gamma-rays and neutrons by using the Monte-Carlo simulation, which was divided into two parts; first was gamma-detection part and second was gamma- and neutron-simultaneous detection part. Consequently, we confirmed that simultaneous detection of gamma-rays and neutrons could be feasible and valid, although further research is needed for adoption on real detection.

Improved fast neutron detection using CNN-based pulse shape discrimination

  • Seonkwang Yoon;Chaehun Lee;Hee Seo;Ho-Dong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3925-3934
    • /
    • 2023
  • The importance of fast neutron detection for nuclear safeguards purposes has increased due to its potential advantages such as reasonable cost and higher precision for larger sample masses of nuclear materials. Pulse-shape discrimination (PSD) is inevitably used to discriminate neutron- and gamma-ray- induced signals from organic scintillators of very high gamma sensitivity. The light output (LO) threshold corresponding to several MeV of recoiled proton energy could be necessary to achieve fine PSD performance. However, this leads to neutron count losses and possible distortion of results obtained by neutron multiplicity counting (NMC)-based nuclear material accountancy (NMA). Moreover, conventional PSD techniques are not effective for counting of neutrons in a high-gamma-ray environment, even under a sufficiently high LO threshold. In the present work, PSD performance (figure-of-merit, FOM) according to LO bands was confirmed using a conventional charge comparison method (CCM) and compared with results obtained by convolution neural network (CNN)-based PSD algorithms. Also, it was attempted, for the first time ever, to reject fake neutron signals from distorted PSD regions where neutron-induced signals are normally detected. The overall results indicated that higher neutron detection efficiency with better accuracy could be achieved via CNN-based PSD algorithms.

A novel ceramic GEM used for neutron detection

  • Zhou, Jianrong;Zhou, Xiaojuan;Zhou, Jianjin;Jiang, Xingfen;Yang, Jianqing;Zhu, Lin;Yang, Wenqin;Yang, Tao;Xu, Hong;Xia, Yuanguang;Yang, Gui-an;Xie, Yuguang;Huang, Chaoqiang;Hu, Bitao;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1277-1281
    • /
    • 2020
  • A novel ceramic Gas Electron Multiplier (GEM) has been developed to meet the demand of high counting rate for the neutron detection which is an alternative to 3He-based detector at China Spallation Neutron Source (CSNS). An experiment was performed to measure the neutron transmittance of ceramic-GEM and FR4-GEM at the small angle neutron scattering (SANS) instrument. The result showed the ceramic-GEM has higher transmittance and less self-scattering especially for cold neutrons. One single ceramic GEM could give a gain of 102-104 in the mixture gas of Ar and CO2 (90%:10%) and its energy resolution was about 27.7% by using 55Fe X ray of 5.9 keV. A prototype has been developed in order to investigate the performances of the ceramic GEM-based neutron detector. Several neutron beam tests, including detection efficiency, spatial resolution, two-dimensional imaging, and wavelength spectrum, were carried out at CSNS and China Mianyang Research Reactor (CMRR). The results show that the ceramic GEM-based neutron detector is a good candidate to measure the high intensity neutrons.

A Study on Performance Characteristics of Neutron Detector to Measure the Burnup Profile of Spent Fuel in NPP (원전 내 사용후핵연료 연소도 측정을 위한 중성자 검출기의 성능 평가 연구)

  • Hye Min Park;Tae Young Kim;In Ho Lee;Dae Heon Jang;Yang Soo Song;Un Jang Lee;Cheol Min Ham
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.293-297
    • /
    • 2023
  • The burnup profile of spent fuel should be determined accurately for the safety storage of spent fuel. In this study, a neutron detection system was developed as a part of basic research to analyze the burnup profile of spent fuel, and a performance was evaluated using a radiation source. The prototype of the neutron detection system was based on a 3He proportional chamber. The 3He proportional chamber is often used for neutron measurement and analysis because of its high neutron detection efficiency and simplicity for gamma ray rejection. For quantitative evaluation, tests were conducted using calibrated 252Cf and 137Cs sources. In the performance evaluation, a field applicability was verified by analyzing the detection characteristics according to the nuclide.

Study on the neutron imaging detector with high spatial resolution at China spallation neutron source

  • Jiang, Xingfen;Xiu, Qinglei;Zhou, Jianrong;Yang, Jianqing;Tan, Jinhao;Yang, Wenqin;Zhang, Lianjun;Xia, Yuanguang;Zhou, Xiaojuan;Zhou, Jianjin;Zhu, Lin;Teng, Haiyun;Yang, Gui-an;Song, Yushou;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1942-1946
    • /
    • 2021
  • Gadolinium oxysulfide (GOS) is regarded as a novel scintillator for the realization of ultra-high spatial resolution in neutron imaging. Monte Carlo simulations of GOS scintillator show that the capability of its spatial resolution is towards the micron level. Through the time-of-flight method, the light output of a GOS scintillator was measured to be 217 photons per captured neutron, ~100 times lower than that of a ZnS/LiF:Ag scintillator. A detector prototype has been developed to evaluate the imaging solution with the GOS scintillator by neutron beam tests. The measured spatial resolution is ~36 ㎛ (28 line pairs/mm) at the modulation transfer function (MTF) of 10%, mainly limited by the low experimental collimation ratio of the beamline. The weak light output of the GOS scintillator requires an enormous increase in the neutron flux to reduce the exposure time for practical applications.

CHARACTERISTICS OF FABRICATED SiC RADIATION DETECTORS FOR FAST NEUTRON DETECTION

  • Lee, Cheol-Ho;Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Park, Hyeon-Seo;Kim, Gi-Dong;Park, June-Sic;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.70-74
    • /
    • 2012
  • Silicon carbide (SiC) is a promising material for neutron detection at harsh environments because of its capability to withstand strong radiation fields and high temperatures. Two PIN-type SiC semiconductor neutron detectors, which can be used for nuclear power plant (NPP) applications, such as in-core reactor neutron flux monitoring and measurement, were designed and fabricated. As a preliminary test, MCNPX simulations were performed to estimate reaction probabilities with respect to neutron energies. In the experiment, I-V curves were measured to confirm the diode characteristic of the detectors, and pulse height spectra were measured for neutron responses by using a $^{252}Cf$ neutron source at KRISS (Korea Research Institute of Standards and Science), and a Tandem accelerator at KIGAM (Korea Institute of Geoscience and Mineral Resources). The neutron counts of the detector were linearly increased as the incident neutron flux got larger.

A prototype of the SiPM readout scintillator neutron detector for the engineering material diffractometer of CSNS

  • Yu, Qian;Tang, Bin;Huang, Chang;Wei, Yadong;Chen, Shaojia;Qiu, Lin;Wang, Xiuku;Xu, Hong;Sun, Zhijia;Wei, Guangyou;Tang, Mengjiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1030-1036
    • /
    • 2022
  • A high detection efficiency thermal neutron detector based on the 6LiF/ZnS(Ag) scintillation screens, wavelength-shifting fibers (WLSF) and Silicon photomultiplier (SiPM) readout is under development at China Spallation Neutron Source (CSNS) for the Engineering Material Diffractometer (EMD).A prototype with a sensitive volume of 180mm×192mm has been built. Signals from SiPMs are processed by the self-design Application Specific Integrated Circuit (ASIC). The performances of this detector prototype are as follows: neutron detection efficiency could reach 50.5% at 1 Å, position resolution of 3, the dark count rate <0.1Hz, the maximum count rate >200KHz. Such detector prototype could be an elementary unit for applications in the EMD detector arrays.

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

A Study on the Neutron Detection by change of Asphalt Content (아스팔트 함량 변화에 따른 중성자 검출에 관한 연구)

  • Kim, Ki-Joon
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • In this study, the change of neutron detection can be use the basic data of asphalt content detector under the influence of the jurisdiction and usage of radioisotopes are limited of $100[{\mu}Ci]$ or less. To obtain neutron detector's properties using design materials in first step phase, the change of neutron detection is to be calculated how can be increase or decrease due to the change of asphalt content, also it look over the change results which is installed absorber(cadmium plate) around moderator(polyethylene) using MCNP Code.

  • PDF