• Title/Summary/Keyword: Neutral Radius

Search Result 33, Processing Time 0.027 seconds

Stability Analysis of the Karman Boundary-Layer Flow

  • Lee, Yun-Yong;Hwang, Young-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.50-63
    • /
    • 2002
  • The Karman boundary-layer has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type I instability. This early transition is due to the excitation of the Type II. Presented are the neutral stability results concerning these instabilities by solving newly formulated stability equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from ${Re}_{c.1}$=285.3 to 270.2 and the value corresponding to Type II from ${Re}_{c.2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved fro)m $k_1$=0.378 to 0.386 for Type I; from $k_2$=0.279 to 0.385 for Type II. For Type II, the upped limit of wave number and azimuth angle is $k_u$=0.5872, $\varepsilon_u$=$-17.5^{\circ}$, while its lower limit is near $k_u$=0, $\varepsilon_u$=$-28.4^{\circ}$. This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

Lyman-alpha radiative transfer through outflowing halo models to understand both the observed spectra and surface brightness profiles of Lyman-alpha halos around high-z star-forming galaxies

  • Song, Hyunmi;Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.3-59.3
    • /
    • 2018
  • With a recent observational study of extended Lyman-alpha halos around individual high-z star-forming galaxies by Leclercq et al. (2017) using MUSE, we perform radiative transfer calculations to see if Lyman-alpha scattering can explain the spatial extents of the halos together with their spectra. We adopt a spherically-symmetric halo model in which Lyman-alpha sources and neutral hydrogen (HI) medium have exponential density distributions. The HI medium is set to have outflowing motion based on a momentum-driven wind scenario in a gravitational potential well. We run our Lyman-alpha radiative transfer code, LaRT, upon this halo model for various sets of parameters regarding the HI medium such as temperature, optical depth, density scale radius, outflow velocities, and dust content. We analyze simulation results to see the impact of each parameter on Lyman-alpha spectra and surface brightness profiles, and degeneracies between the parameters. We also find a parameter set that best reproduces simultaneously the observed spectra and surface brightness profiles of the MUSE Lyman-alpha halos.

  • PDF

Stroke Verification Test and Operational Characteristics Analysis of KSLV-I Kick Motor TVC Nozzle (나로호 킥모터 TVC 노즐 행정확인시험 및 특성 분석)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.158-168
    • /
    • 2012
  • This paper deals with TVC nozzle stroke verification test and corresponding analysis techniques related to kick motor TVC system of KSLV-I second stage. It is shown that the relationship between TVC stroke and potentiometer voltage is revealed via the open-loop stroke verification test, and other major operational parameters including nozzle alignment error, actuation error, neutral position, radius of nozzle rotation, location of nozzle rotation center, angle conversion coefficients, etc. are analyzed via the closed-loop stroke verification test. The TVC stroke verification test results for the first and second flight model of KSLV-I show that all TVC operational parameters of KSLV-I second stage were normally setup for the first and second flight tests.

Extensible Elastica Solutions on the Large Deflection of Fiber Cantilever with Circular Wavy Crimp (I) - Derivation of Models and Their Solutions-

  • Jung Jae Ho;Kang Tae Jin
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.55-65
    • /
    • 2005
  • Extensible elastica solutions of two-dimensional deflection of crimped fiber cantilever of circular wavy crimp were obtained for one end clamped boundary under concentrated, inclined and dead tip load Fiber was also regarded as a linear elastic material. Crimp was described as a combination of semicircular arcs smoothly connected with each other having con­stant curvature of all the same magnitude and alternative sign. Also the inclined load direction was taken into account. The solutions were expressed as the recursive forms of integrals in two different cases, which can also be transformed to elliptic integrals respectively. Comparing the data with inextensible ones was carried out. Consequently in the solution, the normal strain of neutral axis is expressed in terms of cross-sectional area, second moment of area and normalized load parameter. Examples of the circular cross-sectioned fiber are presented. As a result, the differences of normalized load between inexten­sible and extensible elastica solutions when the radius ratio becomes 0.1 were maximum $\Lambda$ = 0.1.

Stability of the K rm n Boundary Layer Flow (Karman 경계층 유동의 안정성에 관한 연구)

  • 황영규;이윤용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.771-781
    • /
    • 2000
  • The Karman boundary-layer, has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type 1 mode of instability. This early transition is due to the excitation of the Type II mode. Presented are the neutral stability results concerning these modes by solving new formulated vorticity equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from Rec,! =285.3 to 270.2 and the value corresponding to Type II is from $Re_{c,2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved from $k_1$ =0.378 to $k_1$ =0.389 for Type I; from $k_2$ =0.279 to $k_2$=0.385 for Type II. For Type II, the upper limit of wave number and azimuth angle is $k_U$=0.5872,$varepsilon_U=-18^{\circ}$ , while its lower limit is$k_L$ =0.05, $varepsilon_L=-27^{\circ}$ This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

  • PDF

EFFECTS OF THE DIFFUSE IONIZING RADIATION ON THE STRUCTURE OF HII REGIONS

  • Hong, S.S.;Sung, H.I.
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.2
    • /
    • pp.127-140
    • /
    • 1989
  • Problem of the diffuse radiation (DFR) transfer is solved exactly for pure hydrogen nebulae of uniform density, and accuracies of the on-the-spot (OTS) approximation are critically examined. For different values of density and spectral types of the central star, we have calculated the degree of ionization and the kinetic temperature of electrons as functions of distance from the central star, and compared them with the corresponding results of the OTS approximation. At most locations inside an HII region. the DFR ionizes considerable amount of hydrogen; therefore, the OTS approximation under-estimates the size of ionized regions. The exact treatment of the DFR transfer results in an about 10 to 20 percent increase in the classical $Str{\ddot{o}}mgren$ radius. The OTS approximation overestimates the local heating rate by raising the density of neutral hydogens. Consequently, it predicts higher values for the local electron temperature. The OTS approximation also exaggerates the dependence of electron temperature on density. When the hydrogen density is changed from $10/cm^3$ to $10^3/cm^3$ with an 06.5V star, the OTS approximation shows an about 3,000 K difference in the electron temperature, while the exact treatment of the DFR-transfer reduces the difference to about 1,000 K. The OTS approximation fails to demonstrate the brightening of the electron temperature close to the ionization boundary.

  • PDF

Reliability Assessment of Flexible InGaP/GaAs Double-Junction Solar Module Using Experimental and Numerical Analysis (유연 InGaP/GaAs 2중 접합 태양전지 모듈의 신뢰성 확보를 위한 실험 및 수치 해석 연구)

  • Kim, Youngil;Le, Xuan Luc;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.75-82
    • /
    • 2019
  • Flexible solar cells have attracted enormous attention in recent years due to their wide applications such as portable batteries, wearable devices, robotics, drones, and airplanes. In particular, the demands of the flexible silicon and compound semiconductor solar cells with high efficiency and high reliability keep increasing. In this study, we fabricated a flexible InGaP/GaAs double-junction solar module. Then, the effects of the wind speed and ambient temperature on the operating temperature of the solar cell were analyzed with the numerical simulation. The temperature distributions of the solar modules were analyzed for three different wind speeds of 0 m/s, 2.5 m/s, and 5 m/s, and two different ambient temperature conditions of 25℃ and 33℃. The flexibility of the flexible solar module was also evaluated with the bending tests and numerical bending simulation. When the wind speed was 0 m/s at 25 ℃, the maximum temperature of the solar cell was reached to be 149.7℃. When the wind speed was increased to 2.5 m/s, the temperature of the solar cell was reduced to 66.2℃. In case of the wind speed of 5 m/s, the temperature of the solar cell dropped sharply to 48.3℃. Ambient temperature also influenced the operating temperature of the solar cell. When the ambient temperature increased to 33℃ at 2.5 m/s, the temperature of the solar cell slightly increased to 74.2℃ indicating that the most important parameter affecting the temperature of the solar cell was heat dissipation due to wind speed. Since the maximum temperatures of the solar cell are lower than the glass transition temperatures of the materials used, the chances of thermal deformation and degradation of the module will be very low. The flexible solar module can be bent to a bending radius of 7 mm showing relatively good bending capability. Neutral plane analysis was also indicated that the flexibility of the solar module can be further improved by locating the solar cell in the neutral plane.

Study on the Angular Momentum of Axisymmetric Tropical Cyclone in the Developing Stage (발달 단계의 축대칭 열대저기압의 각운동량에 관한 연구)

  • Kang, Hyun-Gyu;Cheong, Hyeong-Bin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The angular momentum transport of an idealized axisymmetric vortex in the developing stage was investigated using the Weather Research and Forecast (WRF) model. The balanced axisymmetric vortex was constructed based on an empirical function for tangential wind, and the temperature, geopotential, and surface pressure were obtained from the balanced equation. The numerical simulation was carried out for 6 days on the f-plane with the Sea Surface Temperature (SST) set as constant. The weak vortex at initial time was intensified with time, and reached the strength of tropical cyclone in a couple of days. The Absolute Angular Momentum (AAM) was transported along with the secondary circulation of the vortex. Total AAM integrated over a cylinder of radius of 2000 km decreased with simulation time, but total kinetic energy increased rapidly. From the budget analysis, it was found that the surface friction is mainly responsible for the decrease of total AAM. Also, contribution of the surface friction to the AAM loss was about 90% while that of horizontal advection was as small as 8%. The trajectory of neutral numerical tracers following the secondary circulation was presented for the Lagrangian viewpoint of the transports of absolute angular momentum. From the analysis using the trajectory of tracers it was found that the air parcel was under the influence of the surface friction continuously until it leaves the boundary layer near the core. Then the air parcel with reduced amount of angular momentum compared to its original amount was transported from boundary layer to upper level of the vortex and contributed to form the anti-cyclone. These results suggest that the tropical cyclone loses angular momentum as it develops, which is due to the dissipation of angular momentum by the surface friction.

A Study on the Result of Test Site on BMD (골다공증 검사 시 검사부위에 따른 결과에 대한 고찰)

  • Hong, Dong-Hee;Han, Sang-Hyun;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • The measurement of Korea people's Radial-terminal region were frequently measure of the left hand of Radial-terminal region due to the most Korean's are right-handed and it occasionally showed incorrect results. Therefore, in this study, we accessed a correlation with error of measurement and reduced the measurement error invalid. We reviewed 50 adults patients, from March 2012 for a certain period of time, visited the orthopedic center for the neutral position of forearm of plain radiography and measured the left side of the distal radial-terminal region containing the terminal region of the right distal radius. Then we have compared and analysed both T-score. As a result, the lower value of left wrist were 45 out of 75 which is approximately 60% of left wrist group while the lower value of right wrist were 30 out of 75 which is approximately 40% of right wrist group.

Discovery of a New Mechanism to Release Complex Molecules from Icy Grain Mantles around Young Stellar Objects

  • Hoang, Thiem;Tram, Le Ngoc
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.70.4-70.4
    • /
    • 2019
  • Complex organic molecules (COMs) are increasingly observed in the environs of young stellar objects (YSOs), including hot cores/corinos around high-mass/low-mass protostars and protoplanetary disks. It is widely believed that COMs are first formed in the ice mantle of dust grains and subsequently released to the gas by thermal sublimation at high temperatures (T>100 K) in strong stellar radiation fields. In this paper, we report a new mechanism that can desorb COMs from icy grain mantles at low temperatures (T<100K), which is termed rotational desorption. The rotational desorption process of COMs comprises two stages: (1) ice mantles on suprathermally rotating grains spun-up by radiative torques (RATs) are first disrupted into small fragments by centrifugal stress, and (2) COMs and water ice then evaporate rapidly from the tiny fragments (i.e., radius a <1nm) due to thermal spikes or enhanced thermal sublimation due to increased grain temperature for larger fragments (a>1 nm). We discuss the implications of rotational desorption for releasing COMs and water ice in the inner region of protostellar envelopes (hot cores and corinos), photodissociation regions, and protoplanetary disks (PPDs). In shocked regions of stellar outflows, we find that nanoparticles can be spun-up to suprathermal rotation due to supersonic drift of neutral gas, such that centrifugal force can be sufficient to directly eject some molecules from the grain surface, provided that nanoparticles are made of strong material. Finally, we find that large aggregates (a~ 1-100 micron) exposed to strong stellar radiations can be disrupted into individual icy grains via RAdiative Torque Disruption (RATD) mechanism, which is followed by rotational desorption of ice mantles and evaporation of COMs. In the RATD picture, we expect some correlation between the enhancement of COMs and the depletion of large dust grains in not very dense regions of YSOs.

  • PDF