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Extensible Elastica Solutions on the Large Deflection of Fiber Cantilever
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Abstract: Extensible elastica solutions of two-dimensional deflection of crimped fiber cantilever of circular wavy crimp were
obtained for one end clamped boundary under concentrated, inclined and dead tip load Fiber was also regarded as a linear
elastic material. Crimp was described as a combination of semicircular arcs smoothly connected with each other having con-
stant curvature of all the same magnitude and alternative sign. Also the inclined load direction was taken into account. The
solutions were expressed as the recursive forms of integrals in two different cases, which can also be transformed to elliptic
integrals respectively. Comparing the data with inextensible ones was carried out. Consequently in the solution, the normal
strain of neutral axis is expressed in terms of cross-sectional area, second moment of area and normalized load parameter.
Examples of the circular cross-sectioned fiber are presented. As a result, the differences of normalized load between inexten-
sible and extensible elastica solutions when the radius ratio becomes 0.1 were maximum A =0.1.
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Introduction

In our previous paper [1], we derived the elliptic integral
solutions on the large deflection of fiber cantilever with circular
wavy crimp under dead tip load, and estimated it. The
possibility of extension of neutral axis during deflection can
also be considered. In applied mathematical area, several
researchers dealt with the extensibility of straight beam or
column. Magnusson et al. [2,4] dealt with the post-buckling
problem of simply hinged column withy two end considering
extensibility. But there is few report about extensible elastica
solutions of two-dimensional crimped beam with inclined
loading. This result can be explained as follow. First, the concept
of crimpis neither familiar nor easy to treat to the researchers
in solid and fiber mechanics. As is emphasized in our previous
paper, the modeling of plainly circular crimp is more complex
than that of helical one. Unlike the case of helical one, one
should deal with a series of governing equations at each
segment of crimp. Second, although the extensibility is relatively
easy to consider in establishing governing equation, it is very
difficult to obtain its exact solution (See reference 2 and check
its mathematical complexity). Thus the extensible elastica
solution of crimped cantilever has never been attempted. In
this work, we are to get it by applying new mathematical
techniques summarized to three key concepts.

Mathematical Modeling
The description of fiber characteristic is almost the same

as our previous paper [1]. A fiber is considered as a linear
elastic and extensible beam with negligible shear effect.
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Segment numbering is the same as our previous paper. To
solve the extensible elastica solution, the geometrical scheme
must be reformulated as shown in Figure 1.

Geometric Relationships and Equilibrium Equations
The geometrical relationships and the equilibrium equations
are as follow.

_ dx _ @ _ '
dy=(1+¢)drl, dr—(1+g)cose, dr—(1+g)s1n9 1)
H=P_ =Psina, V= P, =Pcosa 2)

M(T') = M, P, x—P,y = P{coso(X—x) +sino(Y-y)} (3)

M(n_d_e_(d_e)
EI ~dU \dl),

Where, the notation of H, V, N and P characters denotes the

4)

Xy M(s) I%—‘-(Hé)df

Figure 1. Free body diagram of extensible beam element under load.
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load, M the bending moment. Also, dy is the extended arc
length of neutral line, 4I” the initial length. Meanwhile, the
tensile strain (g) for the extension of neutral axis must be
expressed as follow.

EA-¢=(—Hcos0+ Vsin0) = —P(sinacos B—cososin8)
. ¢=-usin(a—-6), P/AEA)=u 5)

Governing Equations

Substituting the equations (2) and (3) into (4) gives the
following governing equations.

do 1

G =5 gyleosati=x) +sine(Y-y)) ©

=—(1+¢)cos@, %:—(1 +¢)sinf (7a,b)

Using the relationship S=S,-I" (See Figure 1) and the
equation (5) and differentiating the equation (6) with respect
to § gives:

Z_g— +Il)—1?]{cosa(X—x)+Sln05(Y—J’)} @®)
d_Sf— b%{l —psin(a— 6) }eos(a—6) ©)

Where, the sign of the 1/p in the right side of the equation
(8) is plus for the segment of odd order, minus for the
segment of even order.

Mathematical Solutions
Integrating the equation (9) gives

%(Z_g) —l%{sln(a 9)—2#Sin2(a_ 9)}_,_[) (10)

Where, D is the integral constant we should evaluate.
Normalizing the equation (10) and determining the integral
constant gives the following equation (11) and (12).

(55) ZZ{SIn(a—B)—-usm (a-6) D} (11a)
S _ P52 _, PR
5= Ao gr=A (11b)

D, = sin(a- 6i_1)—%usin2(a— 6._.)

2

—;[\/ {sm(a— _ 1)— usm (a 6,_)-D,_ } A/Z—I_J (iz22)

D,-sm(a—a))— usm (a w)—— L (12)

2A

These equations cannot be directly transformed to elliptic
integrals. It appears to be the reason why many former
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researchers did not attempt to deal with the crimped and
extensible elastica. Here we introduce new constant C; that
satisfies:

D,=Cim3uC. €= {1~ 12D} (13)

The above constant is the first key concept of the modeling.
Then the equation (11) can be rewritten as:

(jg) A1-c, )[ 2 C‘sinz{ Y5-ox e)H
—#C,--#[l —25in2{ %(’5’- a+ G)H (14)

Note that if the value of C; is greater than unity, the
equation (14) has no solution because the right side of the
equation (14) has minus value. The proof is the following.

2 .2z :
If, C;> 1, the term l—l_Csm {2(§—a+ 9)} in the above

i

equation is always greater than zero since the value of —C
is minus. Using the equation (13), we can find the following
inequality.

2—#{C,'+ 1 —25in2{%(§—a+ 6)”22—-/1[Ci+ 1]

=1+,/1-2uD;—~u>0 (u=1)

Thus the right side of the equation (14) has minus value.
Meanwhile, one can easily confirm the value of the right side
of the equation (14) should be zero so that the value of C;
may be equal to unity. Therefore, we discard the case of
C;> 1 in our model. Similar to the previous paper, the further
transformation of the equation (14) must be performed according
to the range of the value of C,. '

2
Case 1: T——CiZl or -1<C;<l1

Introducing and transforming variables into the equation
(14) as below give the equation (15).

1-C; 1w s
— = k;, sm2(2— o+ 9)— k;sing,
2k,cos¢
d0= ——————d¢

cos{%(g_m 9)}

i@)z_ zl(zf_ ) i ik + P sin?
(ds,- = A,cos 2\5 o+ 6 | p(1 -+ pk; + pk; sin” )

= A(1-K sin’9) (1 — 1+ uk’ + k. sin>9) (15)
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The above equation can be rewritten as:
(*Dd¢

JA(=K2sing) /1 — -+ i + pklsin®g

Here we meet an important problem. The question whether
the sign should be chosen as plus or minus in the equation (16)
will arise. Although we did not discuss it in our previous
paper, choosing the sign in the equation (16) is originated
from choosing the start point of the arc length as loaded free
or clamped end for the case of straight beam. If the point is
chosen as clamped end, the sign becomes plus. If the point is
chosen as loaded free end, the sign becomes minus. However, it
is both possible to choose the sign in the equation (16) either
plus or minus in our cases. For the case of n elements of
crimped segments, there exist total 2" choices. This is the
second key concept of the modeling. It enables the solutions
to have relatively much more equilibrium configurations of
different shapes. As the simplest choice, we put all the signs
as minus. Other choices will be dealt with in part II.
Integrating the equation (16) from ¢._, to ¢ gives:

J'l d8,~ - J’¢.>| d¢ (17)
‘ % (1= sin?g)1 -+ ik + pksinZo
The equation (17) can also be transformed to elliptic integral.
This is inspired from the transformation of Weierstrass type
elliptic integral to Legendre-Jacobian type one [3]. Detailed
procedure is demonstrated in Appendix A. As a result, the
equation (17) is transformed to the following elliptic integral.

2
~{Fy Y- F @y ¥ 18
ﬁ{@171) s} (18)

a;=1-p+pkl, by=pk;, q;=

de; =

1

(16)

i

b
a;+b,

2,2 2,2
Pi=q; +ki-qik;

tan¢g = l—q?tany, tang, = l—q?tanyi,

tang, | = ./l—qftany,._l

Using the equations (7a,b), (11b) and the following equation,
we also express the infinitesimal elements of x and y in terms
of the variable ¢, &,

2.2
{cose} =|: sine cosoﬂ 1-2k;sin"¢ (192)

sin@ cosel  sino +2k sing ll—kfsinzq)

Where, the sign of the right side of the equation (19) becomes
plus as the slope angle @ satisfies cos%(g -0+ 9)20 , minus
2\2

as cosl(l—r —-a+ B)S 0 . It results from the following relation-

ship.
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cos{%(g—oﬁ 9)} =+ [1-Ksing (19b)

Also there exists a method of fixing the sign in the
equation (19). The value of O must satisfy the following
relationship so that the sign of the equation (19b) may be plus.

4n7r—37n+ ases4nn+§+a (19¢)

Where, n is an appropriate integer. If we choose the value of
n appropriately so that 8 = 0 may be within the above range
with given value of « and define all the value of 6 and @
within the above range, we can fix the sign in the equation
(19) as plus. For example, if we choose the value of » as zero
and define all the values of 8 and @ within the following
range with the given range of O<a<m/2, we can fix the
sign as plus. This is the third key concept of the modeling.

—377[+aS6& wsg+a (19d)

Note that the interval [— ?ir+ a, T

2 2 + a} covers .all possible

slope angles, which is equivalent to the interval [0, 277]. Also
the sign in the equation (16) are different from that in the
equation (19).

In summary, the choice of the sign in the equation (16) and
(19c) is described as the following.

1. The sign in the equation (16) can be chosen as either
plus or minus. Therefore, there may exist multiple equilibrium
configurations according to the sign. In our present work, we
choose the sign as all minus. Other choices will be dealt with
in part I1.

2. The sign in the equation (19b) can be chosen as plus if
we confine all existent angles of slope within the range
shown in the equation (19d).

Applying this concept, we obtain the following equation
(20) by integrating the equation (7) with the aid of the equation
(5) and (19) as:

LJjA, _  _ o )
T{(xf—l -X) = [o {1+ u-2u(1-K;sin )
x[sino(1 —2kfsin2¢) +cosa- 2k;sing- A/l—lc?ﬁzq)]

X d¢ (20a)
A/(1 —kfsin2¢)A/l —,u+/,Lk? +,uk?sin2¢

Lfa_  _ . .
%(yf—l-yﬂ=Iﬁi"{“#—w(l—k?smz@}

X [—cosa(1— 2k?sin2¢) +sina-2ksing- /1 —kfsinztp]

x d¢ (20b)
J( = Esing) 1 - i+ + kP sin’¢
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Also the equation (20) can be partially transformed to elliptic
integrals. Detailed procedure is demonstrated in Appendix B.

2 [2
—< < — =k
Case 2: —c~ lorCsl, —C, k;

The equation (14) can be rewritten as:

oo )
—ﬂ[l—2sin2{%(§—a+ G)H} @1)

Transforming variables as (72— o+ 6) = 2¢ gives:

(j—g)z (1 Kisin (p){2 u(l—z) u(1-2sin (p)} (22)

Jhde, = (-1)"7° kdg (23)

Ni! —kfsinz(p~ 1—u+%+ysin2(p
WK

Similarly in the case 1, we introduce a new variable y
under following transformations.

tanp=,/1~ tany 24)

u

2 2 2,2
vk —aq.k;
al+u ql 1 ql I

qi= a=1- y+‘%, p;=
k;

Applying the equation (24) to (23) and integrating it gives:

i- /\]1_‘12
A= (-1 L
0

i

{Fp,-F@,v-0} (25)

2 2
tang, = ,/1-g;tany,, tang,_ =,1-g;tany, ,
Similarly, we also express the infinitesimal elements of x
and y in terms of the variable @, &; as:

. (x;_y=X;) = (~1)i_ ajw" {sinccos2 - ,usinoccosz2 o}
Si (78}
+sin2 pcosa— Hcosocos2 @sin2 @)
kde

,/1 ksm(p/\ﬁ ,u+£+,us1nq)
L[_

—— (i J_;i)=(_1)i'5J'Z[ {—cosacos2¢+ucosacos22<p

(26a)

+sin2 gsinor—Usinacos2 @sin2 @)
kdo

X
J1 —k?sinz(p~A/l

(26b)

—,u+%+,usin2(o
k

i
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Where, the value of & is unity when the total number of
segments is even, zero when odd. The equation (18), (20), (25)
and (26) are the solutions of extensible elastica of crimped
fiber under inclined loading. Similarly, the arbitrary position
(x, y) can be calculated by replacing the parameters x;, y; and
¢, (or @) with x, y and ¢(or ¢). Also the equations can be
partially transformed to elliptic integrals. Detailed procedure
is demonstrated in Appendix C. Comparison of data and the
effect of extensibility u on the solution for circular-cross-
sectioned fiber with two elements will be discussed in Results
and Discussions.

Results and Discussions

Algorithm of Two-element Extensible Elastica Solutions
For two elements, the values of «, EI, p are assumed as
given values. Instead of the method in previous paper, we
adopt the procedure of shooting the value of A so that the
value of @, must be zero at the given value of ® for
mathematical convenience. Note that the value of i in the
equation (5) is the function of A, A, p and I as follow.
P _1EI I A
TRy 27)
EA EA p2 A p2
For a fiber of circular cross-section, the area A and second
moment of area / is given as:

4
2 nr
A=mr, I=—
4
Where, r is the radius of the fiber. Thus the equation (27) is
expressed as:

1/ rV
==~ 2
# 4(p) A @5

We use the above relationship for two-element example.
The radius ratio #/p is assumed as the value of 0.05 and 0.1
Detailed algorithm of solving the equation (18) and (25) is
demonstrated as follows.

For Ist Element at Loaded Tip

1) Guess the value of A and determine the value of Dy, C,
4 with the given parameters ¢, EI, p, @ using the equation
(28) and the following equation (29) and (30).

D, =sin(o— w)— ,usm (a w)-— A 29)
Cl=;l(1—ﬁ/1—2uD1) (u#0) (30)

=D, (u=90)

2)-i) If —~1<C, <1, calculate the value of k;, ¢ using the
following equations.

b= ot (31)
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1. 1(75 )
= arcsing —sinz| T - o+ @ (32
¢0 {kl 2 2 } )

2)-ii) Using the equation (18), find the value of ¢,
satisfying the following equation by Newton Rapson
Method.

o d
f(¢1)=A/Il— & — S > s (33)
A/l—klsin xA/l — U+ pk + Pk sin'x

2)-iii) Calculate the value of 6, using the following equation
and the result of the equation (33).

6, = 2arcsin(k,sing,) + a—g (34)

3)-i) If C;< -1, calculate the value of k;, ¢, using the
following equations.

2
k= |—=— 35
TNL-C G

@0 = %G—o& a;) (36)

3)-ii) Using the equation (25), find the value of ¢
satisfying the following equation by Newton Rapson Method.

~109, k,d
o = A -3 Nk
A/l—kfsin2x~ 1—,u+%+usin2x
1 ky
=0 (37

3)-iii) Calculate the value of 6, using the following equation
and the result of the equation (37).

6, = 2(p1+a—7§r (38)

For 2nd Element at Clamped End

4) Take the value of @, from the results of the former
procedure 2)-iii) or 3)-iii).

5) Determine the value of D,, C, using the following
equations and the equation (28).

D, = sin{(a- 9])—%usin2(a— 0,)

2

-%{ \/2{sin(a—61)—%,usin2(a—01)—D1}—A/2—/_J (39)
C;= {(1-[T=24D;)  (u0)

=D, (1=0) (40)

6)-i) If -1<C, <1, calculate the value of k,, ¢, using the
following equations.
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1-C
k==~ (41)
J1 . 1(n
¢, = arcsin k—zsmz SO 6, (42)

6)-ii) Using the equation (18), find the value of ¢
satisfying the following equation by Newton-Rapson
method.

¢ d.
fi9) =l |y =
ﬁ—k2sin xA/l — [+ ks + pkssin®x

6)-iii) Calculate the value of 8, using the following equation
and the result of the equation (43).

=0 43)

6, = 2arcsin(k,sing,) + a_%r (44

7)) If C;<-1, calculate the value of k,, ¢ using the
following equations.

ky = . (45)

1
o=5(3-+6)) 46)

7)-ii) Using the equation (25), find the value of ¢, satisfying
the following equation by Newton-Rapson method. The
value of § is equal to unity because the total number of
segments is two in this case.

- k,d
fig) = 2= -1 ki
Jl—kﬁsinzx- /1—,u+‘%+/,tsin2x
k2
=0 47

T)-iii) Calculate the value of 6, using the following
equation and the result of the equation (47).

6,=20,+ a—g 48)

8) Shoot the value of A by false-position method so that
the value of 6, from the result of the procedure 6)-iii} or 7)-
iii} must be under the allowed tolerance.

In the above algorithm, 4; and A, is transformed as below
in terms of A.

2
A=A, = %A (49)
In the equation (34) and (44), one should pay attention to

estimating whether the calculated values of 8, 6,, w satisfy

the following relationship.

—3—27—T+ a6, 8, wS§+(x (50)
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Table 1. Iterated values of A from the case 2 - case 2 solutions with
given value of @ for inextensible elastica g =0at @=45"°
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Table 2b. Iterated values of A from given range of 65°<wm
<135° for inextensible cases under o = 45 °

& O w®) A 6, (°) Segment1Segment2 @(°) U A
0 24.2227 0.1 0.0015642 Case 1 Case 1 65 0 5.9139148
0.0000001 42.55242 0.2 0.0012481 Case2 Case2 75 0 0.5917881
0.0000002 70.423138 0.5 0.0001393 Case 1 Case 1 75 0 24121884
0.000001 87.280039 1 0.0002254 Case 1 Case 1 75 0 5.2026061
0.0000119 99.253506 2 0.0000131 Case 1 Case 1 75 0 6.7895188
0.0000007 104.59921 3 0.0014155 Case2  Case2 85 0 0.897703
0.0000001 107.8640652 4 0.0000262 Case 1 Case 1 85 0 2.6489086
0.0000243 Case 1 Case 1 85 0 6.0096544
Table 2a. Iterated values of A from given range of —225°< 0.0009944  Case 1 Case 1 85 0 8.031097
0 <65 [ fOI' inextensible c 0.0003942 Case2 Case 2 95 0 1.5194857
= = 0.0000866 Case 1 Case 1 95 0 2.906201
6,() Scgment]Scgment2 () K A 00001507 Casel Casel 95 0 68333997
0.0000046  Case 1 Case2  -195 0 41754017 00047067 Case2 Case2 105 0 3.1104413
00003236 Casel  Casel  -195 0 4.599905 0.0000019 Case2 Casel 115 0 3622108
0.0015205 Casel Case 2 -185 0 2.626774
0.0015783 Casel Case 1 -185 0 3.2495879 . R
0.0002396 Case 1 Case 1 -185 0 42644488 Table 3a. Ite¥ated values of A from given range ;—225 °<w<15
00039651 Case 1 Case 2 175 0 1.8409865 of for extensible cases of r/p = 0.1 under a =45
0.0073286 Casel Casel  -175 0 26542348 6,(°) Segment1Segment2 w(°) U A
0.0001413 Case 1 Case 1 -175 0 2.9630178 0.0000003 Case 1 Case 2 -195 0.0103 4.13533903
0.00827 Case 1 Case 2 -165 0 1.3832187 0.000375 Casel Case 2 -185 0.0065 2.6115489
0.0037929 Case 1 Case 2 -155 0 1.0913676 0.0038601 Case 1 Case 1 -185 0.0081 3.2311423
0.0060427 Casel Case 2 -145 0 0.8931723 0.0001329 Case 1 Case 1 -185 0.0104 4.1849894
0.0002569 Case 1 Case 2 -135 0 0.6975071 0.0108105 Case 1 Case 2 -175 0.0046 1.8340375
0.0042437 Casel Case 2 -135 0 0.7522203 0.0074014 Case 1 Case 1 -175 0.0066 2.6453498
0.0001673 Case2 Case2 5 0 0.019636 0.0001424 Case 1 Case 1 -175 0.0073 2.9334403
0.0006645 Casel Case 1 5 0 4.1639934 0.0009417 Casel Case 2 -165 0.0034 1.3797442
0.0001656 Case 1 Case 1 5 0 5.2478184 0.0015201 Case 1 Case 2 -155 0.0027 1.0894987
0.0000947 Case2 Case2 15 0 0.0598442 0.0046996 Case 1 Case 2 -145 0.0022 0.8921372
0.0007565 Casel Case 1 15 0 4.1125928 0.0002964 Case 1 Case 2 -135 0.0017 0.6968817
0.00013 Case 1 Case 1 15 0 5.8525122 0.0034014 Case 1 Case 2 -135 0.0019 0.7516574
0.0016507 Case2 Case2 25 0 0.1035928 0.0001673 Case2 Case2 5 0 0.0196359
0.0012474 Case 1 Case 1 25 0 4.2347175 0.0003795 Case 1 Case 1 5 0.0104 4.1883158
0.000067 Casel Case 1 25 0 6.3974896 0.0002188 Case 1 Case 1 5 0.0132 5.2936851
0.001989 Case2  Case2 35 0 0.1542714 0.0000954 Case2  Case?2 15 0.0001 0.059843
0.0011102 Case 1 Case 1 35 0 44676117 0.0000564 Case 1 Case 1 15 0.0103 4.130149
0.0000622 Casel  Casel 35 0 7.6130058 0.0001606 Casel  Casel 15 0.0147 5.9039782
0.0019431 Case2 Case2 45 0 0.2167125
0.0007981 Case 1l Case 1 45 0 4.8087316 .
0000052 Casel Case 1 45 0 95462196 Tables 2 and 3 sbow the data of 1t<:,)rated valueos of
0.0010201 Case2 Case 2 55 0 0.2987137 .A(O < A'S 10) from given value o.f —225°<w<135° for
0.0015016 Casel Case 1 55 0 52774345 inextensible and extensible elastica of r/p=0.1. under
0.0021841 Case2 Case 2 65 0 0.414276 a=45 ° Increasing interval of @ is 1'0 °, The dlffeirence of
0.0000366 Casel  Case 1 65 0 33194896 norma!lzed logd betwgen the class1c§1 inextensible and
0.0001551 Casel  Case 1 65 0 3.9575397 extensible elastica solutions has the maximum value A =0.1

Table 1 shows the iterated values of A from the case 2 -
case 2 solutions with given value of @ for inextensible
elastica of ¢ = 0 at & = 45 °, which shows good agreements
to the table IV, in reference [1].

at w= 35 °. This difference can be assumed negligible under
the common range of large deflections of slender beams. We
don’t present other results for «=0°, 30°, 60 ° and 90 ° in
this paper since they show the same tendencies.

Results of case 2 — case 2 type solutions in the above
Tables 2 and 3 are emphasized with bold letter. Figure 2
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Table 3b. Iterated values of A from given range of 25°< @ < 65°
for extensible cases of r/p=0.1 under @ =45°

6, (") Segmentl Segment2 (%) u A

0.0016488 Case 2 Case 2 25 0.0003 0.1035862
0.0009795 Case 1 Case 1 25 0.0106 4.2472441
0.0000373 Case 1 Case 1 25 0.0161 6.4587669
0.001986 Case2 Case 2 35 0.0004 0.1542509
0.0014947 Case 1 Case 1 35 0.0112 4.4749834
0.0000186 Case 1 Case 1 35 0.0193 7.7107085
0.0019579 Case2 Case 2 45 0.0005 0.2166614
0.0001307 Casel Case 1 45 0.012 4.8098119
0.0010977 Case2 Case 2 55 0.0007 0.298597
0.0000518 Casel Case 1 55 0.0132 5.2700674
0.0021443 Case2 Case 2 65 0.001 0.4140143
0.0001528 Case 1 Case 1 65 0.0082 3.2971524
0.0001525 Case 1 Case 1 65 0.0101 4.0376426
0.0015887 Case 1 Case 1 65 0.0147 5.8943386
0.0008911 Case 2 Case 2 75 0.0015 0.5911898
0.0001122 Casel Case 1 75 0.006 2.4182686
0.0002656 Case 1 Case 1 75 0.0131 5.2334741
0.0000189 Case 1 Case 1 75 0.0169 6.7508997
0.0018849 Case2 Case 2 85 0.0022 0.8961972
0.0000627 Case 1 Case 1 85 0.0066 2.6536227
0.0000194 Case 1 Case 1 85 0.015 6.020286
0.0004297 Case 1 Case 1 85 0.0199 7.9604386
0.0020122 Case2 Case 2 95 0.0038 1.5147713
0.0000284 Case 1 Case 1 95 0.0073 2.9108423
0.0000983 Case 1 Case 1 95 0.017 6.821674
0.00012 Case 2 Case 2 105 0.0077 3.080586
0.0000045 Case?2 Case 1 115 0.0091 3.655715
04
— A=0.0196359, 0= 5
02 .« A=0.1542508 , o = 35°
—— A=0.4140143, @ = 65°
—— A=15147713 , 0 = 95°
00 - —— A=3.0889361, @ = 105
02 - e o= 45°

a0 //

yit

Jdo 7

-08 4

s
PR
1%x ' ¥

08 06 04 02 00 02 04 08 08 10 12
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Figure 2. Shapes of case 2 - case 2 equilibrium with variable load

and tip angle for extensible elastica of r/p =0.1 at x=45°.
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shows some examples of case 2 - case 2 equilibrium shapes
with variable load and tip angle for extensible elastica of r/p
=0.1 at given inclined angle =45 °.

It is very interesting feature that there exists the region of
tip angle @ that does not have equilibrium configuration in
Table 2. Moreover, there exists only one root for case 2 — case
2 and case 2 — case 1 type solutions, while case 1 — case 1 and
case 1 — case 2 type solutions have several multiple roots. In the
case 2 — case type in Figure 2, the normalized load gradually
grows larger as the tip angle @ increases up to @ =95 °. But
the value of A at @=105"° becomes more than two times
larger than that at @=95 °. It implies that the equilibrium
shape need two times larger value of normalized load to
increase the tip angle by merely 10° (from 95° to 105°).
Though not presented in this paper, it can be concluded that the
possible region of case 2 - case 2 equilibrium is commonly
about the range of 0 < A<5 for =0°, 30°, 45°, 60° and
90 ° as we confirm that from the table IV, in reference [1].
Shapes of other type solutions with different choices of the
sign in the equation (16) will be dealt with in part II.

Conclusions and Further Works

Extensible elastica solutions of large deflection of crimped
fiber cantilever under inclined load were solved and several
shapes of the equilibrium configurations were presented. The
mathematical solutions also have the form of recursive equation
of integrals, which can be transformed to elliptic integrals.
During deriving the solutions, the mathematical complexity,
which rendered other researchers to avoid solving the exact
solution of crimped cantilever beam under inclined loading,
was overcome by introducing new integral constants. Fixing
the sign in the equation (16) and (19) are another two key
concepts of the modeling. Where the former is involved with
the multiplicity of the solutions, the later with the choosing
range of the available slope angles. These three concepts are
the keys to the solutions. Since the mathematical characteristics
of the extensible elastica solutions are very similar to that of
inextensible ones, extensible elastica solutions show similar
behaviors to classical inextensible elastica ones. The difference
of the normalized load A between the classical inextensible
and extensible elastica solutions has the maximum value 0.1.
Alternatively, calculated solutions have multiple roots. This
topic will be discussed more precisely in part II.

References

1. J. H. Jung, T. J. Kang, and K. W. Lee, Text. Res. J., 73(1)
47 (2003).

2. A. Magnusson, M. Ristinmaa, and C. Ljung, Int. J. Solids
& Struct., 38, 8441 (2001).

3. Z. X. Wang and D. R. Guo, “Special Functions”, p.549,
World Scientific., 1986. -

4, H. Ramsey, Int. J. Mech. Sci., 30, 559 (1998).



62  Fibers and Polymers 2005, Vol.6, No.1

Nomenclature

Basic geometrical and material parameters in this work are
defined as follow.

E: elastic modulus of a fiber

A: cross-sectional area of a fiber

R: initial radius of curvature

6: slope angle

a: inclined angle of load

o slope angle at loaded tip

¢ strain of neutral line

I: second moment of area of the cross-section

x: horizontal coordinate of arbitrary position after deflection

y: vertical coordinate of arbitrary position after deflection

(x;_1, yi-1): coordinates of the start point of i-th segment after

deflection (i =2 1)
(x;, yp: coordinates of the end point of i-th segment after
deflection (i = 1)

X: horizontal coordinate of loaded tip after deflection

¥ vertical coordinate of loaded tip after deflection

(X, Y): coordinates of the loaded tip after deflection

s: arc length measured from the point (x;_;, y,1) to (x, y)
after deflection

7: arc length measured from the point (x, y) to (x;, ;) after
deflection

s;: arc length measured from the point (x;_;, y,_1) to (x;, ¥
after deflection

S: arc length measured from the point (x;_, y,_y) to (x, )
before deflection

I": arc length measured from the point (x, y) to (x;, ;) before
deflection

S;: arc length measured from the point (x;_;, y.;) to (x; y,)
before deflection

Appendices

Appendix A : Transformation to Elliptic Integrals Type A
6y dé
eﬂ
J1-#sin’6y4 + Bsin’0

Here we introduce the following variables as:

2
sin’@ = (- qz)zt —2 ( 122—1) (qz,t2<1)
1-g7¢ g \l1-qg°t

(4,B>0) (A-1)

A Sl SR

«/1 qt

t——q—“l‘; (-1<t<1)
1-1

L 1-g
All—qztz

c0s0=+1—sin’0=

or tanf=

Jae Ho Jung and Tae Jin Kang

The above signs are chosen all plus or minus Then the
terms in the equation (A-1) become:

~.dO= 1_q2 qzt +'\/1 t +A/1 —q t dt
¢ (- 12 wi-¢
[ 2
__lq__ (A-2)

(1-g"f)1-

1-Ksin°0 = /\/1 _k2(1 qz)tz - A/l —(gi+k2—q2k2)zz

22
1-g¢ J1-¢*f

,p-l (1-E)(1-¢"),

22

_Nl-pt

_/\/1 qt

2 24,2
A+Bsin29=A/,;+B(1 O J;+{B(1_q -4}

22
1-g% J1-g*t

If we choose the value of ¢ so that the following relation-
ship may be satisfied,

NA +Bsin’ 0= /4 ,
,\ll—qzt2

0<p’<l  (A-3)

(A-4)

or B(1-¢*)-A4q°=0,

2 B

Ry (A-5)
Then it is satisfied that
deo =«/1—q2t2.«/1—q2t2
J1-Psin20J4 + Bsin29  J1-p272 A4
J1-g J1-g" dt (A-6)

kl—qt)ﬂ I e

Here, we see the form of Legendre-Jacobian elliptic
integral of first kind

0, de J't ANl- q
" [1—isinofd+ Bsinte JAN1-21—p t
=/\/1—gf Y% dx (A-7)
/ / 2
L1 =A41- tanya, tan8, = 129

1-¢

..Q

Where, tanf, =

=41 *qztanyb

3

SN
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Appendix B : Transformation to Elliptic Integrals Type B
We have two equations expressing infinitesimal elements
of X and y from case 1.

Lf

—g =) = [ {1+ p-2u(1-Ksin” 9))

[sino(1- 2k sin ¢)+cosa 2ksing- /1~ k sin ¢)

9 (B-1a)
A/(l—k,.sin ¢)J1—y+uk,+ykisin ¢

L

5 Gem=7) = Jo {1+ p-2p(1-Ksin’ 9)}

[-cosa(1- Zkl?sin2 @) +sina-2k;sing- 1 —kfsin2 @]

x 49 (B-1b)
JO=Rosin?§) 1 -+ il + uksin’¢

From the above two equations, we can find five different
types of integrals as

I= i1 d¢
K A/1 —kfsin2¢Jl — e+ ke + ik sin’ ¢

[ (1-Ksin’9)d
e . .
Jl —kfs1n2¢J1 —u+ukf+ukfs1n2¢

(1-Ksin’9) do
¢' A/1 K:sin ¢J1 i+ Lk + ik sin’ ¢

Il =

V= ¢,:_, singd¢
Jl—u+ukf+ukfsin2¢
. 2.2
o, sSing(1—k;sin"@)d¢
g A/1—u+ukf+,ukfsin2q)

V=

The integrals I, II, III can be transformed to elliptic
integrals under the following transformation

tang=,/1 —q?tany (B-2)

2, _(1-gDsin’y

sin"g=———=——-—, or
l—qfsinzy
2 2 2 b,
a;=1-pu+pk;, b;=pk;, q; = +b
=g g ®3)

Here are the results.

Fibers and Polymers 2005, Vol.6, No.1 63

iy d¢
Jl —kfsinzq)A/l —,u+,ukf+uk?sin2¢
'\] _qz
Ja;

b (1-K’sin’ 9)d¢
" Jl—kfsin2¢Jl—,u+ukf+,ukfsin2¢
K(-q)) 1 .
1—dsin 27 2
—q;smy 1-g;

(1-g;sin’y)

I=

{F(pz’}/ l) F(pﬂ Y)} (B'4)

II=

1- 2
_ % 4;

IR .ll—pfsinz}/ ,\/47,.
A/1—q?sinzja/l—q?sin2)/2
_J-a y,--IHHk?(l—q?)} I
A/a_i " ; Jl—pfsinzy

4q;

P(l-d?
k-g) 1 }dy
222 2.2
9 (1-gisin"y),/1-p;sin"y.
_Al-aff
Jai |
k( 7))
qi

{1 k( i )}{F(p,,y D-F(p, 1)}
qi

— {6, Y%-1)-G, V)}} (B-5)

. (1-k2sin’g) do
% 1 Rsin’ g1 -yt kil + pklsin
Jhil-g) K(-g) 1 }2

1 —
_Al-g y{ 7 g 1-gsin’/
o 1-psin’y
KEa-g))’ K(1-g))
3 {1+—2—— -2 1+—2
=N 1-4; JYH 4 4qi
Ja; " J1 —plsmy
kK (1-g}) 1 +{ki(1—qi)}( 1 )2
qf 1- q sm y q? l—q?sinzy2 dy
N1- smy
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E(l-gH)) k(-
—2{“' L 2%)} ( ql)[G(qup AVELG N PYA)
q; qi
K (1- q,)
+9—— [HPp,q9,%_1)-H(,, 9, 7)] (B-6)
qi

where tang, = l—q?tan"y,-, tang,_, = /1_qftanyi_l and
F(p,V,G(p,q,7),H(p,q,7) are defined as

Fop = || —2—
J N1 —pzsmzx

Legendre-Jacobian elliptic integral of first kind

Gp.gN=]

dx
0 . / .
(1 —qzsmzx) 1 —pzsmzx

Legendre-Jacobian elliptic integral of third kind

Hp.q.9=[

dx :
° (1 —qzsinzx)z,\/ 1 —pzsinzx
Integral function similart to Legendre-Jacobian elliptic
integral of third kind

The integral IV and V can be calculated analytically.

0i-1 singd¢
” Jl — 2k~ K cos’ ¢ A/uk /
= 1z{arcsm(q,-cosq)i)—arcs1n(ql-cos¢i_1)} (B-7)
MK
. ¢,_ sing(1-kjsin’9)dp J ~{1-k(1-D)}dr
A/ 1 2
1- u+2yk ,uk cos¢ A/,uk -t
q;
{ [l k2+]-€—J
1 Ti_) qz (78]
== L - di+ Fdr
,Uki —i—tz qi
q;
1 K
= {{l k+ }{arcsm(q,cosq),) arcsin(g,cos,_;)}
Juk? q;
i1
[{arcsm(q,cosqb )—arcsin(g,cos¢,)}
qz

+ p [sin{2arcsin(q,-cos¢i_ ) }—{sin2arcsin(q,cos¢,)}]
(B-8)
Where, ¢, =

1 1
ZCOS% i = Zcos¢i—1
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Appendix C : Transformation to Elliptic Integrals Type C
We also have two equations expressing infinitesimal
elements of ¥ and y from case 2

L.JA, S0
%()_ci_l-)—ci) =(-1) 5[2:_1 {sinocos2 g— usinacos 2

+sin2 @cos - Lcos acos2 @sin2 @)
kdo

A/l ksmqu ,u+‘L—l+,usm(p

(C-1a)

LJ—

RO EIC 5_["" {-cos0cos2 @+ Licos acos 2

+5sin2 @cos o— usinorcos2 @sin2 )

kd
x e (C-1b)

,/1—kfsin2¢~J1 —/.L+‘%+psin2q)
k

Similarly, four different types of integrals can be found as

,[ cos2<pdq)
o Jl k sin’® @ Ja +usin’ @
€os Zqod(p
(p' A/l Ksin’ - ﬂusm )
sin2 @d ¢
B A/1 —kfsinz(p~A/a,.+/,tsin2(p

1=

sin2(pcosZ(pdq)
fio A/1 Ksin” - Ja +psin’ ¢

="

The integrals I, II can be transformed to elliptic integrals
under the following transformation

tang = /1 —q?tany (C-2)
2 U _ M 22 .2 2,2
q; _ai‘*’ll’ai_ 1‘ﬂ+k?’Pi =q; +ki—q;k; (C-3)
Here are the results.
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{2(1 )
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2 2
where tang,=,/1—g;tany;, tang,_, = ,/1-g;tany,_, .
integral ITI and IV can be calculated analytically.

(C-5)
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