50 International Journal of Air-Conditioning and Refrigeration Vol. 10 No. 1 (2002)/pp. 50~63

Stability Analysis of the Karmian Boundary-Layer Flow
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Abstract

The Karman boundary-layer has been numerically investigated for the disturbance wave
number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow
over rotating disk can lead to transition at a much lower Re than that of the well-known
Type I instability. This early transition is due to the excitation of the Type II. Presented are
the neutral stability results concerning these instabilities by solving newly formulated stability
eguations with consideration of whole convective terms. When the present numerical results are
compared with the previously known results, the value of critical Re corresponding to Type I
is moved from Re.;=285.3 to 270.2 and the value corresponding to Type II is from Re,,=

69.4 to 36.9, respectively. Also, the corresponding wave number is moved from k;=0.378 to
0.386 for Type I, from ky,=0.279 to 0.385 for Type II. For Type II, the upper limit of wave
number and azimuth angle is k;,=0.5872, e;y=—175° while its lower limit is near Ak, =0,
ey=—284° This implies that the disturbances will be relatively fast amplified at small Re

and within narrow bands of wave number compared with the previous results.

Nomenclature . scaling factor, [ O(1)]
¥ : non-dimensional radius, 7/D
C ‘cose , Re : Reynolds number, do7rD/v
Co : Coriolis par.ameter, 2—Ro—Ro Ro : Rossby number, du/Q
Cp : wave velocity, 8/k (for Karméan boundary-layer, Ro= —1)
D : characteristic boundary-layer thickness, S :sine
Vv/Q z  non-dimensional axial coordinates, z/D
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8 : rotating angle of new oriented coordi-
nate, e+ (7 /2)

€ | azimuthal angle of disturbances

. radial components of perturbation vorti-

city equation

7 ! tangential components of perturbation
vorticity equation

7w . outer of the boundary-layer

v kinematic viscosity [cm%sec]

dw  a relative angular speed of fluid, wr— wp

wr * angular velocity of fluid

wp - angular velocity of disk

Superscripts

- ! dimensional variable
" new oriented curvilinear coordinates

Subscripts

© critical

' imaginary

! real

: outer region of the boundary-layer
: Type I instability

* Type II instability

NHS?JNQ

1. Introduction

The hydrodynamic stability over the rotating
system has been investigated by many sci-
entists in order to understand the fundament-
al mechanism of 3-dimensional boundary-layer
transition process (Faller,m Kobayashi et al.,w
Kohama and Suda,® Lilly,” Lingwood,” Malik,®
Smith™ and Wilkinson and Malik®). Various
types of flows belong to this category. As an
example, the stability and transition of rotating
flows have been related to aerospace, marine
applications and similar phenomena over swept-
back airfoils such as an impeller, transition pro-
cess of ICBM's cone and electron devices of

wafer.

The rotation of flow system dramatically af-
fects the stability characteristics of flows at
various physical situations. After the famous
exact solution for the Karman boundary-layer
flow were obtain by Sparrow and Gregg,(g) the
progress made in stability theory and experi-
ment for rotating flows has been explosive in
the past decades. The stability analyses of
Lilly(‘” and Faller and Kaylor/‘w) for the Ekman
and Kiarman boundary-layer flow revealed that
the inclusion of Coriolis term in the stability
analysis for stationary disturbance wave yields
the significant increment of the critical Rey-
nolds number, Re.; (i.e, Type I instability).

Also, they found that another mode of insta-
bility (i.e., Type II instability) for moving dis-
turbance waves, caused by the Coriolis force,
exists at much lower value of critical Reynolds
number, Re., compared to those of stationary

disturbance waves for the Karman boundary-
layer.

Some examples of the stationary disturbances
are concerned with the Type I instability des-
cribed as below. The boundary-layer flow over
a rotating disk in a quiescent fluid has fre-
quently been used as a canonical three-dimen-
sional flow that amplifies the cross-flow insta-
bility. In this flow, the instability appears as
outward-spiraling vortices. The Karman bound-
ary-layer transition on a rotating disk was
first studied by Smith” using the hot-wire
technique. He observed that sinusoidal disturb-
ances appear in the disk boundary-layer at
sufficiently large Reynolds numbers. Approxi-
mately 32 oscillations were observed within a
disk rotation period and his numerical analysis
indicated that the disturbances propagate at an
angle of about 14° relative to the outward
drawn radius (where the direction of disk ro-
tation defines positive angle). Later, Gregory et
al."’ observed 28~3I spiraling outward vor-
tices over a rotating disk at an angle of about
14° by using the china-clay technique for flow
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visualization. These vortices, which appeared
stationary relative to a disk, were first ob-
served at the local Reynolds number Re=430,
transition to turbulence occurred near Re=530
(see also Gregory and Walker'™®). The sta-
tionary disturbance wave established in a rota-
ting disk was subsequently studied by lots of

1% performed a

investigators. Kobayashi et a
theoretical analysis in which some of the ef-
fects of Coriolis and streamline curvature were
considered. They calculated the value of Re.,
as 261 and observed that the number of spiral
vortices is 31 or 32 at the position of Re=297
and that the gradient of vortex axis was de-
creased from 14° to 7° as Re was increased.
Malik et al™® numerically predicted that the

critical Reynolds number Re., for establish-
ment of stationary disturbance wave is 287
and these vortices spiral outward at an angle
of about &.;=11.2° (Note that the recalculated
values of Malik® are Re,=28536 and ¢, ;=
11.4°). They observed that there were about 21
vortices at Re=294. Similarilly, their calculated
value of Re. s for Type II moving disturbance
wave for the Ekman boundary-layer was about
49,

For the Karman boundary-layer flow, Faller”
considered the effects of Coriolis force and
streamline curvature in his stability analysis
and obtained the neutral stability results, e.g.,

(a) Photo from Faller'”

Fig. 1 Type II and secondary instability of Karman boundary-layer illustrated.

Re,.=2853, k.,(wave number at Re.;)=
0.378 and e, (azimuth angle at Re.;)=139°
for Type 1 instability, while Re. =694, k. o=
0279 and e€.,=-19° for Type II instability.

He took sequential photographs of dye bands
which were moving outward, as seen in Fig.
1(a). The resulting sketches of die patterns in
Fig. 1(b) illustrated the typical structures of
Type II and secondary instabilities.

The present study is a stability analysis of
rotating disk flow (ie., the Karman boundary-
layer), in which the effects of Coriolis force
and streamline curvature are included. The
previously known linear stability equations of
Faller'” are reformulated by correcting sign
errors and by keeping whole convective terms.
Using the orthogonal collocation technique ac—
curately solves the reformulated stability equa-
tions. The results yield more complete 4-di-
mensional neutral stability curves, correspond-
ing to the Type I and II instabilities, than
those of previous investigators. It will be seen
that the flow is always stable for a disturb-
ance whose dimensionless wave number & is
greater than 0.8 (i.e., if wp=0.3251ps, and whose
corresponding physical wave number k>427
cm ). It will also be shown that the azimuth
angle of disturbance wave which spiral out-
ward tend to be decreased from 13.2° to lower
angle as the local Reynolds number is further

(b) Sketch of their structured
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increased from Re. ;. Otherwise the first un-
stable condition for Type II instability mode
is the band of dimensionless wave numbers 0.0
< k<0587 with azimuth angles —284°< ¢ <
-17.5°

2. The governing equations and
numerical method

2.1 Base flow equation

The model presented here describes a family
of boundary-layer flows caused by a differen-
tial rotation rate between a solid boundary, or
disk, and an incompressible fluid in rigid-body

). Particular cases of this

rotation (see Faller
family are the Karman, Ekman and Boédewadt
boundary-layer flows. The radius of the disk
and the extent of the fluid above the disk are
considered to be infinite, and the disk and fluid
rotate about the same vertical axis with an-
gular velocities wp, and wr, respectively. The
Karman boundary-layer (the rotating-disk bound-
ary-layer flow described by Faller'”) arises when
the disk rotates and the fluid is stationary, i.e.,

wp*0, wp=0, for the Ekman layer wp=wr,
and for the Bodewadt layer wp=0, wr*0. Be-

tween these particular examples are flow in
which both the fluid and the disk rotate, but
with differing angular velocities. Although the
model is valid for counter- and co-rotating
systems, only co-rotating systems will be ana-
lysed here. To incorporate this range of con-
ditions in one model, a "system rotation rate”,
£, is defined by

[Ja @p

7-Ro ' 3+ Ro

Q= ()
where Ro is the Rossby number, Ro= dw/$,
and dw is the difference of angular velocity,

wr—wp. For the Karman boundary-layer

flows, it is given by £2= wp, wr=0, Ro=-1.

The component equations of motion for a
uniform fluid in a cylindrical coordinate system
rotating with the angular velocity wp may be

written as

. _ — 2 —
w,+(u V)u——%——Zva =

_ (2a)
— —  u 2v
2 u )
pr+ V( u »® 7,2 )
PRACE v)?;—%”—wwu; =
. _ . (2b)
. R T L7
v v 7
wt(u VYw=—p,+vviw (2c)
The continuity equation is
(ru) T —
“‘*‘r—r—+—r—0+ w, =10 (3)

where the subscripts ¢, », & and z denote par-
tial differentiation.

Also, ?t v and w are the components of the

velocity of the “u in the 7, 8 and z directions,
respectively, the constant specific gravity is in-
cluded with the pressure as p.

The dependent variates are separated into
those of a basic flow (capitals) and fluctuations,
as

Cu, v, w, p) = (U, V, W, P)+(u, v, w,p) (4

Assuming an axially symmetrical similarity
solution to the basic flow with the similarity
variates F(z,t), G(z,t) and H(z, t) defined by

U= dwrF(z)
V = dwrG(z) (5)
W= dwDH(z)



% Yun-Yong Lee and Young-Kyu Hwang

where D= (v/£2)"? is the boundary-layer thick-
ness, t*(=1¢/9) is the non-dimensional time
divided by £ and z* (=2z/D) is the non-di-
mensional axial coordinates which star (*) have

been omitted for convenience.
The non-dimensional radial basic flow equa-

tion is
Fy+ Ro(F2+ HF ,— G2)— 222 o _
¢ T RO z 2 "= ®
P,
T AwrDQ tF

where 2w,/2=Co=2— Ro— Ro?, Coriolis

parameter, and P,/dwrD =P, is suitably

defined non-dimensional pressure whose radial
gradient can be determined from the relative

tangential flow as z-—>0, Therefore V= dwr,
and F=F,=F_,=0, so P,=Ro+ Co.
The axial basic flow equation is P,/dwD*Q

= P;, and from the continuity equation is P,

={. Then the basic flow equations with re-
spect to radial and tangential direction are

Fi+Ro[F*+HF,—(G*-1)] (7a)
= Co(G—1)~F,.=0

G,+ Ro(2FG+ HG,)+ CoF—G_,=0 (7b)
From equation (3) one obtains
H=—2["F(z)de ®)

and boundary conditions are

F(0)=G(0)=H(0)=0,
F()=0, G(o)=1

(9

2.2 The linear stability equations

Now the evolution of infinitesimally small dis-
turbances imposed on the steady flow governed
equations (2) ~(3). The linear stability equations

for the Karman boundary-layer can be derived
and reduced to the similarity form as was done
by Faller et al.'¥ (see also Faller™). We follow
the way of Faller to reformulate the stability
equations as below. But, our stability equations
are slightly different compared to those of Fal-
ler. Namely, the present stability equations have
been reformulated not only by correcting some
errors but by keeping convective terms, instead
of neglecting the perturbated terms with re-
spect to 7. Both the errors and neglected terms
are appeared in the equation (30) of Faller et
a1 19

The conversion from cylindrical (7, 8)- to
rotated rectangular (x, y)-coordinates by rota-
tion through the angle §=¢+(x/2) as illu-
strated in Fig. 2, where ¢ is the angle of the
new x-axis with respect to the tangential di-
rection.

The perturbation equation oriented by the new
(JAc, 9)—coordinates which was rotated through
the angle € from the (x, y)-coordinates as was
done by Faller™ are then

ui+ Re[— (FC+ GS)u,+(— F,5+ G,C)w] (10)
+ Ro(Hu,+ Fu—2Gv) — Cov=u,,+ u,,
The reason why we choose the new oriented
coordinates is very convenient to express with
one-dimensional coordinates which the cross—

flow instability has an azimuth angle € relative

r

Fig. 2 Rotation system.
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to the outer drawn radius tangentially.
The radial- and tangential-components of
perturbation vorticity equations with respect to

¥ -, @-directions are denoted as &, 7

GE() —szr
»

+G.u,—wG)+ Ro(HE+ HE (g,
FZUg
"

&,+ Re(F¢,+

—F,v—Fuv,—2G,u—2Gu,+

v, 2ug
+G,u)— Cou, =V25“";T[~ 7,20

G’?S _ szé
4 4

7,+ Re(Fp,+

+—G;—ua-+szz)+Ro(Hz77+H7yz

+F,u+Fu,—2G,v—2Gv, (11b)
—Fw,— G —F2u+——Gw0)
¥ 7
ol Y 2
Cov, =V*yp 2 2

To adopt a local rectangular coordinate sys-
tem centered at some fixed value of Re let
dr —dx and rd8—dy. The rectangularized hor-
izontal-component vorticity equations over the
rotating disk, derived from equation (11), are
then

&+ Re(FE&,+GE—F.u.+ G, u,

—G,,w)+ Ro(HE, +H, & (12a)
—F,0—Fv,—2G,u—2Gu,+ G,u)
2

v
—Cou, = V25+7—‘;—7u,,z

72+ Re(Fp,+Gp,—F,v,
+ G.u,+ F,w)+ Ro(H, 5+ Hy,

+F,ut+ Fu,—2G,v—2Gv, (12b)
—Fw,— Gw,— F,u+ Guw,)
u, 2

I S 7 A
—Cov,=Vy 7T U

where Re( = dwrD/v) is the Reynolds num-
ber.

(S
]

Note that for the Karman boundary-layer,
since Re= dwr/Q, do=—wp, 2= wp, so Re
=-—y and is negative. But for convenience Re

will be generally treated as a positive number.
The instabilities are assumed to be 2-dimen-

sional vortices independent of new x-direction,
so in the rotated equations 3/dx=0. The vis-
cous terms 1/7 and 1/7° have been omitted

because 1/r=—1/Re.
The perturbation vorticity equation oriented

by the new (%, ¥)-coordinates which was ro-

tated through the angle & from the (x, y)-
coordinates as was done by perturbation equa-
tion are then

&+ Re[— (FC+ GS)&,+ (F,C+ G,.S)w]
+ RolHE, + H, 6~ Fv,— F,v—2G,u
—2Gu,+(F,C+ G, S uS+ v(C) (13)
+(FS—GO)w,S+(GC— FS)w,C]
—Cou, =&, +¢&.,

The corrected sign term is (GC—FS) and
the whole convective terms kept Ro(F'C+
G'S)®, RoS(F'C+ G'S)U and Rok*S(FS—
GC) are included.

The stream function for the flow in the new

(9, z)-plane is defined by

_9¢ 09 s_ g2
w——ay,v— 82’5 Ve (14)

where ~ is omitted for convenience.
The perturbation velocity % and stream func-

tion ¢ may be assumed as

u(y, z,t) = U(z)expl[i(ky— 5t)] (15a)
¢(y,2,t) = 0(z)expli(ky— pt)] (15h)
We shall immediately take advantage of line-

arity and seek solutions in terms of complex
functions. In this way we will be able to re-
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duce our system of partial differential equation
(10) to ordinary differential equations, produc-
ing an obviously facility in the analysis. Thus
real and imaginary parts, we find

Ur''=RoHUg + (RoF+ F*)Ug
+[ 8+ Re(FC+ GS)k1U, (16a)
+(2RoG+ Co)0g’
—Rek(—F'S+G 00,

U/ = RoHU; +(RoF+ k) U;
—[ B+ Re(FC+ GS)k]Ux (16b)
+(2RoG+ Co)®/
+ Rek(—F’'S+ G C)Pr

The reformulated stability equation (13) with
perturbation velocity and stream function equa-
tion (14) and (15) are complex-valued, 6th-order,
linear system of homogeneous differential equa-
tions.

0y = RoH®R" +(RoH + RoF+2k)0g"
+Ro[F' —HE— C(F'C+G'S)10x
~[RoH 'K+ Ro K S(FS— GC)
+ Rok C(GC—FS) + K']10g
+[8+ Re(FC+ GS)k 0] (17a)
— [ Bk + Re (FC+ GS)&®
+Re(F"'C+ G SK @,
—(2Ro G+ Co) Uy’
+ Ro[S(F'C+G'S)—2G 11U

@, =RoH®;" +(RoH + RoF+2k)0;"
+Ro[F’ —HKE—C(F'C+G'S)]®/
—~[RoH F*+ Ro#S(FS— GC)

+ RokC(GC—FS)+ k']0,

—[8+ Re(FC+ GS)k10g" (17b)
+[ 8K+ Re(FC+ GS)K
+Re(F"'C+G"S)kldy

—(2RoG+ Co)U;

+ Ro[S(F'C+G'S)—2G"1U;

In order to specify the problem completely,
boundary conditions are applied to the eigen-

function (U(7), ®(7)). Evidently, the velocity
disturbances quantities #, v and w must be
zero at the rotating disk surface and at a large
distance out (7 —o0). Therefore, the non-di-
mensional boundary conditions are:

U)y=000)=2(0)=0 (18)
U ()= @(c0)= @ (c0) =)

2.3 Numerical method

The boundary value problem, equations (16),
(17) and (18) can be solved by using the tech—

nique of simple shooting from 7= 7., where it

is the asymptotic solution valid as p—0, to

7=0 and one seeks to satisfy the conditions

in equation (18) that apply at 7=0 (Hwang"®).

Also, this problem can be solved by using the
finite difference method (FDM) adopted the
Adams-Bashforth time-step, centered difference
in z as did Faller.” To reduce error propaga-
tion and to avoid the inaccuracies in both me-
thods, the orthogonal collocation method is em-
ployed to solve the problem. Thus, our results
were obtained primarily by using a two-point
boundary value problem code COLNEW"® that
was based upon the adaptive orthogonal collo—-
cation method using B-spline. For the appro-
ximation of 7. in equation (18), 7. =40~120
was chosen that was the same value for the
base flow.

To generate the families of solutions, an ad
hoc scheme was used as described below. Since
there is no simple way to normalize the solu-
tions of the eigenvalue problem, equations (16),
(17) and (18) which has all homogeneous
boundary conditions, an alternative must be
found to avoid the trivial solution.

The boundary conditions, equation (18) are
modified slightly and changed significantly.
These conditions are expressed in the real and
imaginary parts,
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Ur(0)= U ()= 0 ()= 0;(0)=0 (10
O (0)=0,7(0)=T]

UR'(OO)= UI’(OO)—_- ¢R(OO)= d),(oo):() (lgb)
Pr ()= 0, (0)=0

with 107°< | J | <107".

The computing procedure employed to use
the orthogonal collocation code COLNEW for
obtaining the neutral stability curve is quite
similar to that employed in simple shooting.
For a given value Re, one guesses a pair of
eigenvalues £ and f#. One then solves the
linear stability equations (16) and (17) with the
modified boundary conditions equation (19) re-
placing @' (0)=0 using COLNEW, and iterates
by adjusting the values of 4 and £ until the
boundary conditions @5 (0)= @;(0)=0 are sa-

tisfied with | @£'(0)[+@,(0) <107
In our calculation, the following criteria was
used to get the acceptable solution.

min. ([ 10£ O] 10,1\ _. _,
osmoo( [0 (Dl " 10, ()l )Sm (202)
( |¢,;J0)| oi ) <10 e

where M was maximum value of the eigen-
vector components (i.e, U, U, @, @, ') on
0=<7<7. In addition, the error estimates given

on output by COLNEW were less than 1075,
3. Results and discussion
3.1 Theoretical analysis

The reformulated stability equations by cor-
recting sign error and by keeping whole con-
vective terms are accurately solved by using
the orthogonal collocation technique. As the re-
sults, the critical Reynolds number, wave num-
ber, and azimuth angle was obtained, but, the

flow instability is not observed at that point.
The flow instability, which was amplified and
developed from the neutral stability condition,
appears at the several times of critical Rey-
nolds number to the stream flow.

The instability, which appears in the form of
stationary spiral vortices at large Reynolds
number and positive azimuth angle relative to
circles on a disk, is Type I. Whereas Type 1l
as well as Type I has a form of spiral
vortices (Type II) has the opposite angle at
the lower value of Re, compared to Type L

More of, the vortices move rapidly outward
and amplify as they progress. Using the
reformulated equation, we obtained a critical
Reynolds number Re.; =270, as was shown in

Table 1, which is in good agreement with the
theoretical results of Faller'” and Malik,® but
is slightly less than the previous calculated
values. The Type II instability in the Karméan
boundary-layer like the Tollmien-Schlichting
waves amplifies as it moves toward larger Re.
But the Type II instability of three-dimen-
sional boundary-layers should not be confused
with or referred to as a Tollmien-Schlichting
instability.

Not long ago, Malik,” Wilkinson and Malik,®
Malik et al.,(m and Mack™ have shown that
experimental and numerical studies for the
Karman boundary-layer are in approximate
agreement and have converged on the value
Re. ,=290%20.

Similarilly, Malik et a
tioned that there appeared to be a critical
value for Type I moving disturbances for the

as .
1 was briefly men-

Ekman boundary-layer at Re.,=49, but fur-

ther information on that instability was not
provided.

In this paper, a summery of new numerical
calculations of the instabilities over a rotating
disk presents in Tables 1 and 2. The critical
Reynolds number of Type II instability has
Re.,=37, k., (wave number at Re,,)=0.385



58 Yun-Yong Lee and Young-Kyu Hwang

Table 1 Critical values of Type I instability

Table 2 Critical values of Type II instability

Type 1 Type 11
Mode  —Cle™  Modified  Present Mode  —Tiler™  Modified  Present
Re. 2853 2708 2702 Re, 69.4 8% 36,9
£ 0.378 0.389 0.386 i 0.279 0.355 0.385
¢ 139 13.0 133 ¢ ~190 ~26.0 ~235
Cr 444 513 Cp 17.70 15.79

and ., (azimuth angle at Re.,)=—235° Also,

a comparison of the new numerical calculation
with keeping whole convective terms and the
modified calculation with correcting terms of
Faller's form is shown in Tables 1 and 2.

Faller’" obtained the neutral stability results
Re, =694, k.,=0.279 and €.,=—19° for Type
II instability. However, both results agree within
resonable limits, not only considering the terms
of linear stability equations he formulated are
different with those of the present work, but
the numerical techniques he employed are not
as powerful as those available to the authors.
Some numerical values of the available data
are slightly different due to different stability
equations and numerical scheme. It is impos-—
sible to compare directly the critical values of
present work as well as other works with ex-
perimental data (see like Fig. 1). For the small
critical Reynolds number of Type II instability,
there are some doubtful reasons to adopt the
parallel assumption for the linear stability equ-
ation to the entrance region.

Nevertheless, the azimuth angle which has ¢
=—15° at Re=352 for the experimental data
(see Fig. 1) has negative value (—235°) ac-
cording to the coordinates system (see Fig. 2),
it can be considered the amplification rate and
mechanism process corresponding to the change
of azimuth angle. From the present work, the
flow instability will arise at much less Rey-
nolds number under parallel assumption than
previously known results, also, the range of azi-
muth angle for the disturbances was broaden.

The Type II and secondary instability of

Karman boundary-layer which was abruptly
rotating disk in a quiescent fluid illustrated

" and sketch of their struc-

photo from Faller
tured in Fig. 1. This figure is the one of the
serial films in which the azimuth angle of
Type II instability is moving outward from the
center with €=—15° and the secondary insta-
bility showed a specific mechanism for transi-
tion to turbulence that involved ribs with €=
40° formed nearly perpendicular to the primary
instability. In this picture, what the difference
of the direction of y axis and that in Fig. 2
corresponding to the using Re for increased »
in the stability calculation instead of —Re for
convenience is outward direction from the ro-
tating center in Fig. 1. For example, the dis—
turbance amplified at »=61.4 cm (Re=352) and
e=—15°

To explain the process of flow instability
and transition, it need to draw the spatial and

1.22

1.014
>
2 o8
=
By

G

i 0.59
’g 0.38
E F
S a7
5
z,

-0.04

028 . - , ,

S} 2 4 6 8 10

z

Fig. 3 Numerical solution of base flow equa-
tions for Ro=—1. Co=2.
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Re=270.2

k k=0.386
1 € =133
0.3+ Cp=-5.13
£ =21.0°
021 Cp=-1267
0.1 )
62.04 £=-27.0"
Cp=269.0
0.0 Li Ll T T T
¢ 200 400 600 800 1000 1200
Re

Fig. 4 4-dim. neutral stability curves for the Karman boundary layer, corresponding to the Type 1

and II instabilities.

temporal amplification contour corresponding to
the disturbances growing and decaying. The
secondary instability was not considered. Non-
dimensional velocity distribution for the base
flow is shown in Fig. 3 and has an inflection
point for the absolutely unstable.

The 4-dimensional neutral stability curves in
Fig. 4 were drawn by connecting the most
outer portions of stability curves from Figs.
5~11. The Flow is unstable in the inner re-
gion of these 4-dimensional curves but stable
in the outer region. It was obtained 4-dimen-
sional neutral stability curves, corresponding to
the Type I and Type II in Fig. 4, and mini-
mum values on the neutral curves of Type I

Table 3 Minimum values on the neutral curve
of Type I instability near 'nose’

Re, k € Cp
385.19 0.6 85 9.74
297.69 05 10.1 2.50
270.61 04 12.8 —4.08
270.22 0.386 13.3 =513
283.84 0.3 16.3 —10091
340.0 0.234 185 —14.67
383.36 0.2 19.1 —14.28
400.0 0.193 19.0 -63.30

instability near ‘nose’ in Table 3. Then, the
wave velocity (Cp) is changed their sign for
the flow condition. It is supposed that there is
a stationary disturbance between these condi-
tions because of wave velocity implies Cp=0.
Comparison of neutral stability curves in the
(Re, k)-plane for €=10" and 15° between pre-
sent and previous known numerical results are
in Fig. 5.

07

—— Present

06}k (14}

- - - Faller et al.

g4 ¢

k 0.3

02t

-

01}

200 . 300 400 500
Re
Comparison of neutral stability curves

in the (Re, k)-plane for £e=10° and 15°
between present and previous known

Fig. 5

numerical results.
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The present work has less critical Reynolds
number and slightly wide range of wave num-
ber than previous, and stationary disturbances
will observed within this range of azimuth
angle. The present stability results show that
the flow becomes first unstable near the posi-

tion of Re,;=270.2 for a disturbance wave of
k.1=0386 with e,;=133". Note that Cp is
positive as €—82°, whereas Cp is negative as
e—21" and Cp is positive as k is larger upper

part whereas Cp is negative as k£ is smaller
lower part(see Fig. 4 and partly Table 3).

0 200 400 600 800 1000 1200
Re

Fig. 6 Neutral stability curves in the (Re, £)-

plane for e=-—25°, —20°, —15°, —10°

and —5°.

140 ; -
120 / R s

0 200 400 600 800 1000 1200
Re

Fig. 7 Neutral stability curves in the (Re, 8)-

plane for e=—25°, —20°, —15°, —10°

and —5°.

Thus, it is expected that the value of & tends
to be slightly decreased from €=13.3° towards
82" as Re is further increased from Re, (see
Hwang and Lee"™). The above prediction rea-
sonably agrees with the experimental data of
Kobayashi et a.?

Neutral stability curves in the (Re, k2)-, (Re,
B8)-, and (Re, Cp)-plane for the various azi-
muth angles are shown in Figs. 6, 7, and 8
and curve for e=—15° is shown in Figs. 9,
10, and 11. The positive wave frequency (8)

mean that the direction of wave velocity (Cp)

500

400
300
Cp

200

100

i 1
0 200 400 600 800 1000 1200

Re
Fig. 8 Neutral stability curves in the (Re, Cp)-
plane for e=-—25° —20°, —15°, —10°
and —5°.
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Fig. 9 Neutral stability curve in the (Re, &)~

plane for e=—15°
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Re

Fig. 10 Neutral stability curve in the (Re,
B)-plane for e=—15°

run parallel with the » axis in the coordinates
system of Fig. 2.

3.2 Comparison with experimental data
Gregory et al."! discussed the application to
swept-back airfoils, performed well-controlled
experiments to find critical values of the Rey-

nolds numbers for instability (Re,.) and for
transition (Re,) and developed a partial theory

showing that those vortices were associated
with an inflection point in the cross-vortex
basic flow. They observed a stationary vortex
pattern consisting of about 30 vortices between
Reynolds numbers of 430 and 530. Kohama and
Suda® observed that the number of spiral vor-
tices is 33 or 35. Kobayashi et al.”
the value of Re., as 261 and observed that

calculated

the number of spiral vortices is 31 or 32 at
the position of Re=297. Faller’” obtained the
neutral stability results, eg., Re.;=2853, k.,
(wave number at Re.;)=0.378 and e, (azimuth
angle at Re.;)=139° for Type I instability,
while Re.;=694, k.,=0279 and e.p,=-19°

for Type II instability. For the instability pro-
blem, the difference between experiment and

100 |-

Re
Fig. 11 Neutral stability curve in the (Re,
Cp)-plane for e=—15°

calculation for the critical condition is agree-
able with reasonable limits since this flow-field
was sophisticated and had still many unsolved
problems,

There are many methods measuring the
number of the disturbances, like visualization,
acoustics, and hot-wire techniques. But, there
are not so0 many numerical and experimental
results for Type II instability in the Karman
boundary-layer. Lillym
lutions of the Ekman layer problem. He found
that the critical Reynolds number for the fast-

calculated numerical so-

moving disturbances is 55 and the orientation
angle at the critical point is —23°, which de-
creases in magnitude as the Reynolds number
increases. For Type II instability, a similar in-
stability mechanism was detected in the ex-

periments of Faller and Kaylor''® and Tatro

and Molls-Christensen."”

The sequence of Fig. 1 shows the appear-
ance of the secondary instability (ribs) in a
series of three bands of dye as they move
outward and undergo transition. Although the
ribs are nearly perpendicular to the Type II
bands, on other occasions they have been
observed at an angle closer to that expected of
Type 1. A proper theory of the secondary in-
stability must consider the complex three-di~
mensional flow that is the sum of the basic
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flow and the Type II instability. Faller'” pre-

sent numerical calculations of the instabilities
over a rotating disk, emphasizing Type II, and
a description of four plausible mechanisms of
transition to turbulence. He recognized the me-
chanism selected in any particular experiment
should depend upon the level of excitation of
Type II by disturbances in the external flow.
In this paper, it is suggested that the critical
values of Type II are Re_,=369, £=0.385

and €=-—235° in 4-dimensional neutral sta-
bility curves for the Karméan boundary-layer as
shown in Fig. 4.

Further studies for instability amplification
are needed to interpret the instability mecha-
nism, and to investigate the stability conditions
by drawing instability amplification contours
within the neutral curve.

4. Conclusions

The hydrodynamic instability of the Karman
boundary-layer flow has been numerically in-
vestigated by employing the linear stability
theory and experimentally compared with prior
data. The previously known stability equations
of Faller'” are reformulated by correcting the
sign error and by keeping the whole convec-
tive terms. The reformulated stability equations
are accurately solved by a two-point boundary
value problem solving code. A computer code
COLNEW, based on the orthogonal collocation
was used for obtaining the neutral stability
curve. The results include more complete 4-di-
mensional neutral stability curves correspond-
ing to the Type I and II instabilities. The
present stability equations are slightly different
with those of F aller,(“ but our obtained results,
in particular, on Type Il instability are consi-
derably different. However, both results agree
within reasonable limit, considering both of
characteristic shapes of neutral stability curves
are almost same.

In conclusion, the small disturbances intends

to be decayed for Re <Re, whereas they can
be selectively amplified, at least, for Re > Re,.
When the present numerical results are com-
pared with the previously known results, the
value of critical Re corresponding to Type I is
moved from Re,;=2853 to 2702 and the

value corresponding to Type II is from Re,,=
69.4 to 36.9, respectively. Also, the correspond-
ing wave number is moved from k; =0.378 to

0.386 for Type I, from ky;=0279 to 0.385 for
Type II. The results show that the flow is
always stable for the disturbance whose wave
number k£ >0.75. The first unstable condition
for Type II instability mode is the band of
wave numbers 0.0< k& <0587 with azimuth
angles —284°< ¢ < —175° Also, the similar
condition for Type I instability mode is 0.15<
k <0.747 with 8.0°< ¢ <21°

The prediction from the present results on
both instability modes excellently agrees with
the previously known experimental data. In
particular, it reasonably explains the previously
observed subtle phenomena of Type 1 insta-
bilities by considering the relation between the
disturbance waves speeds and azimuth angles.
This implies that the disturbances will be re-
latively fast amplified at small Re and within
narrow bands of wave number compared with
the previous results.
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