• 제목/요약/키워드: Neutral Plane

검색결과 102건 처리시간 0.023초

선박의 비대칭 단면 특성에 대한 연구 (Study on Section Properties of Asymmetric-Sectioned Vessels)

  • 정준모;김영훈
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.843-849
    • /
    • 2010
  • This paper presents definition of symmetry of a ship section where three symmetries are proposed: material, geometric, and load symmetries. Precise terminologies of centroid, moment plane, and neutral axis plane are also defined. It is suggested that force vector equilibrium as well as force equilibrium are necessary condition to determine new position of neutral axis due to translational and rotational mobility. It is also stated that new reference datum of ENMP(elastic neutral moment plane), PNMP(fully plastic moment plane), ENAP(elastic neutral axis plane), and INAP(inelastic neutral moment plane) are required to define asymmetric section properties such as second moment of area, elastic section modulus, yield moment, fully plastic moment, and ultimate moment. Since collision-induced damage and flooding-induced biaxial bending moment produce typical asymmetry of section, the section properties are calculated for a typical VLCC. Geometry asymmetry is determined from ABS and DNV rules and two moment planes of 0/30 degs are assumed for load asymmetry. It is proved that the property reduction ratios directly calculated from second moment of area are usually larger than area reduction ratio. Reduction ratio of ultimate moment capacity shows almost linearly proportional to area reduction ratio. Mobility of elastic and inelastic neutral axis planes is visually provided.

UBET를 이용한 리브-웨브형 링 단조에 관한 연구 (A study on rib-web shaped ring forging using UBET)

  • Kim, Y.H.;Bae, W.B.;Nam, K.H.
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.134-142
    • /
    • 1994
  • An upper bound elemental technique (UBET) is applied to predict variations of neutral plane and optimal position of the initial billet for rib-wep shaped ring forging. In the analysis, the neutral plane position and velocity fields are determined by minimizing the total power consump- tion with respect to chosen parameters. The degree of die-cavity filling by initial billet-position and the variations of neutral plane by friction condition are investigated. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

단일 단순수직통로의 연돌효과와 중성대에 관한 수치해석 연구 (A Numerical Study on the Stack Effect and the Neutral Plane of a Single Simplified Shaft)

  • 전흥균;최영상;추홍록
    • 한국화재소방학회논문지
    • /
    • 제23권5호
    • /
    • pp.143-152
    • /
    • 2009
  • 초고층건물의 수직통로에서 발생하는 연돌효과의 기체역학적 특성과 관련된 차압과 중성대의 위치 계산 및 연돌효과 발생의 가시화를 위하여 3가지 형태의 개구부를 갖는 단일 단순수직통로에 대하여 CFD 모델을 사용하여 수치해석을 하였다. 연돌효과의 차압은 이론식 계산 결과와 비교 시 수직통로의 높이가 높아질수록 차이가 커진다. 중성대 위치는 연돌효과 초기(t = 10s)에 Type A의 경우 수직통로의 높이가 30m 미만인, Type B의 경우 30m 이상인 모델에서 이론식 계산 결과와의 편차가 5% 미만으로 잘 일치한다. 따라서 수직통로 높이가 30m 이상인 다중개구부 수직통로(Type B)의 경우 CFD 모델을 사용하여 중성대 위치를 계산하는 것이 가능하다. 연돌효과의 가시화를 통하여 연돌효과의 공기 유동 현상을 쉽게 이해할 수 있다.

비대칭 손상 선박의 잔류 종강도 평가를 위한 간이 해석 알고리즘 개발 (Development of a New Simplified Algorithm for Residual Longitudinal Strength Prediction of Asymmetrically Damaged Ships)

  • 정준모;남지명;이민성;전상익;하태범
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.281-287
    • /
    • 2011
  • This paper explains the basic theory and a new development of for the residual strength prediction program of the asymmetrically damaged ships, being capable of searching moment-curvature relations considering neutral axis mobility. It is noted that moment plane and neutral axis plane should be separately defined for asymmetric sections. The validity of the new program is verified by comparing moment-curvature curves of 1/3 scaled frigate model where the results from new algorithm well coincide with experimental and nonlinear FEA results for intact condition and with nonlinear FEA results for damaged condition. Applicability of new algorithm is also verified by applying VLCC model to the newly developed program. It is proved that reduction of residual strengths is visually presented using the new algorithm when damage specifications of ABS, DNV and IMO are applied. It is concluded that the new algorithm shows very good performance to produce moment-curvature relations with neutral axis mobility on the asymmetrically damaged ships. It is expected that the new program based on the developed algorithm can largely reduce design period of FE modeling and increase user conveniences.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

박판을 이용한 Z-굽힘 가공의 전개 길이에 관한 연구 (A study on the unfolding length of Z-bending machining using thin plate)

  • 박용순;최계광
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.19-25
    • /
    • 2021
  • The bending process of a press die is to bend a flat blank to the required angle. There are V-bending, U-bending, Z-bending, O-bending etc. for bending processing, and the basic principle of calculating the unfolding length of die processing is used as the neutral plane length. Since the constant of the length value of the neutral surface is different depending on the type of bending, it is impossible to accurately calculate it. In particular, Z-bending processing is performed twice, and it is set on the upper and lower surfaces of the blank, and bending processing occurs at the same time as the upward and downward bending, and the elongation of the material occurs and the material increases. It is not possible to check with the calculated value, and it occurs in many cases where the mold is modified after start-up. This study aims to minimize die modification by developing a formula to calculate the development length of Z-bend.

Lyα Radiative Transfer and The Wouthuysen-Field effect

  • 선광일;김창구
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.43.1-43.1
    • /
    • 2017
  • A three-dimensional (3D) $Ly{\alpha}$ radiative transfer code is developed to study the Wouthuysen-Field effect, which couples the 21 cm spin temperature of neutral hydrogen and the $Ly{\alpha}$ radiation field, and the escape fraction of $Ly{\alpha}$ from galaxies. The Monte Carlo code is capable of treating arbitrary 3D distributions of $Ly{\alpha}$ source, neutral hydrogen and dust densities, gas temperature, and velocity field. It is demonstrated that the resonance-line profile at the center approaches to the Boltzmann distribution with the gas temperature. A plane-parallel ISM model, which is appropriate for the neutral ISM of our Galaxy, is used to calculate the $Ly{\alpha}$ radiation field strength as a function of height above the galactic plane. We also use a two-phase, clumpy medium model which is composed of the cold and warm neutral media (WNM). It is found that the $Ly{\alpha}$ radiation field is strong enough to thermalize the 21 cm spin temperature in the WNM to the gas kinetic temperature. The escape fraction of $Ly{\alpha}$ is found to be a few percent, which is consistent with the $Ly{\alpha}$ observations of our Galaxy and external galaxies.

  • PDF

Effects of Three Different Hip Positions in Frontal Plane on Activity of Abdominal Muscles During Active Straight-Leg Raise

  • Yoon, Tae-Lim;Kim, Ki-Song
    • 한국전문물리치료학회지
    • /
    • 제20권3호
    • /
    • pp.81-88
    • /
    • 2013
  • Active straight-leg raise (ASLR) is a physical evaluation procedure to test lumbar spine stability. Several previous studies have reported various methods to control the activation of abdominal muscles during ASLR. We investigated the effects of three different hip positions in frontal plane on abdominal muscles to increase or decrease the difficulty level of lumbar spine stability exercise during ASLR in pain free subjects. Eleven young and healthy subjects voluntarily participated in this study (6 men, 5 women; mean age=$24.0{\pm}1.2$ years, height=$160.0{\pm}7.3cm$, weight=$55.0{\pm}10.6kg$, body mass index=$21.5{\pm}2.3kg/m^2$). The subjects had three trials on each ASLR with hip $10^{\circ}$ adduction, neutral hip, and hip $30^{\circ}$ abduction. Separate repeated-measures analysis of variance (ANOVA) and the post hoc Bonferroni tests (with ${\alpha}$=.05/3=.017) were performed for each muscle among the three different hip positions in frontal plane (ASLR with hip $10^{\circ}$ adduction, neutral hip, and hip $30^{\circ}$ abduction). The ipsilateral external oblique (EO), contralateral EO, ipsilateral internal oblique/transverse abdominis (IO/TrA), and contralateral IO/TrA were significantly greater in ASLR with hip $30^{\circ}$ abduction compared with ASLR with hip $10^{\circ}$ adduction. Also, the ipsilateral EO, contralateral EO, and ipsilateral IO/TrA were significantly greater in ASLR with hip $30^{\circ}$ abduction compared with ASLR with neutral hip. These results suggest that ASLR with hip $30^{\circ}$ abduction and neutral would be useful method to strengthen the EO and IO/TrA. And, ASLR with hip $10^{\circ}$ adduction would be effective in early stages of lumbar stabilization program due to low activation of EO and IO/TrA during maintaining of ASLR position with low load.

자유수면 근처에서 직진하는 BB2 잠수함의 심도별 유체력과 중립운항에 대한 구속모형시험 연구 (A Captive Model Test on Hydrodynamic Force and Neutral Level Flight of BB2 Submarine in Straight Operation at Near Free Surface with Different Depths)

  • 권창섭;김동진;윤근항;김연규
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.288-295
    • /
    • 2022
  • In this study, the force and moment acting on a Joubert BB2 submarine model at depths near the free surface were measured through a captive model test with the scale ratio of 1/15. Based on the experiment, the pitch moment and heave force due to the "Tail suction effect", including the change in surge force with depth near the free surface, were quantitatively analyzed. The change of force and moment according to the relative position of the sail and the free surface was reviewed with the free surface waves generated for each depths. As a result, the angle of attack of the hull to counteract the pitch moment induced by the tail suction effect was derived. The effect of the hydrostatic moment component according to the angle of attack on the equilibrium of pitch moment was also taken into account. The control plane performance tests for the X-type rudder and sail plane were conducted in snorkel and surface depth conditions to figure out the control plane angles for the neutral level flight of the submarine at near free surface. The results of this study are expected to be used as a reference data for the neutral level flight of the submarine at near free surface operation in the free running model test as well as numerical studies.

Nonlinear bending analysis of bidirectional graded porous plates with elastic foundations relative to neutral surface

  • Amr E. Assie
    • Advances in aircraft and spacecraft science
    • /
    • 제11권2호
    • /
    • pp.129-152
    • /
    • 2024
  • The applicability of a novel incremental-iterative technique with 2D differential/integral quadrature method (DIQM) in analyzing the nonlinear behavior of Bi-directional functionally graded (BDFG) porous plate based on neutral surface is verified in the present works. A formulation of four variables high shear deformation theory is used to describe the kinematic relations with respect to neutral surface rather than mid-plane. Bi-directional material distributions are presented by power functions through both thickness and axial directions. Porosities and voids are distributed by different cosine functions. The large deformations are included within the sense of nonlinear von Kármán strains. The integro-differential equilibrium equations with associated modified boundary conditions are solved numerically and iteratively by using 2D DIQM. Model validations and parametric analysis are depicted to present the influence of neutral axis, nonlinear strains, gradation indices, elastic foundations, and modified boundary conditions on the static deflection in addition to normal and shear stresses. The proposed model is effective in analyzing the static behavior of many real applications in nuclear reactors, marine and aerospace structures with large deformations.