• Title/Summary/Keyword: Neurotoxic

Search Result 184, Processing Time 0.026 seconds

Neurobehavioral Deficits and Parkinsonism in Occupations with Manganese Exposure: A Review of Methodological Issues in the Epidemiological Literature

  • Park, Robert M.
    • Safety and Health at Work
    • /
    • v.4 no.3
    • /
    • pp.123-135
    • /
    • 2013
  • Exposure to manganese (Mn) is associated with neurobehavioral effects. There is disagreement on whether commonly occurring exposures in welding, ferroalloy, and other industrial processes produce neurologically significant neurobehavioral changes representing parkinsonism. A reviewof methodological issues in the human epidemiological literature onMnidentified: (1) studies focused on idiopathic Parkinson disease without considering manganism, a parkinsonian syndrome; (2) studies with healthy worker effect bias; (3) studies with problematic statistical modeling; and (4) studies arising from case series derived from litigation. Investigations with adequate study design and exposure assessment revealed consistent neurobehavioral effects and attributable subclinical and clinical signs and symptoms of impairment. Twenty-eight studies show an exposure-response relationship between Mn and neurobehavioral effects, including 11 with continuous exposure metrics and six with three or four levels of contrasted exposure. The effects of sustained low-concentration exposures to Mn are consistent with the manifestations of early manganism, i.e., consistent with parkinsonism. This is compelling evidence thatMnis a neurotoxic chemical and there is good evidence that Mn exposures far below the current US standard of $5.0mg/m^3$ are causing impairment.

Effect of EGF against Oxygen Radical-Induced Neurotoxicity in Cultured Spinal Dorsal Root Ganglion Neurons of Mouse (산소자유기에 의해 저해된 배양 척수감각 신경절 세포에 대한 상피세포성장인자의 영향)

  • Park, Seung-Taeck;Kim, Hyung-Ryong;Chae, Han-Jung
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 1997
  • In order to elucidate the cytotoxic effect of oxygen radicals on cultured spinal dorsal root ganglion(DRG) neurons derived from mouse. the neurotoxic effect of oxygen radicals w as examined after cultured DRG neurons were exposed to xanthine oxidase(XO) and hypoxanthine(HX)-oxygen radical generating system. In addition. neuroprotective effect of epidermal growth factor(EGF) against oxidant-induced neurotoxicity was also evaluated in these cultures. The results were, as follows: 1. Lethal concentration 50(LC$_{50}$) was 35mU/ml XO and 0.1mM HX in cultured DRG neurons. 2. Oxygen radicals induced the morphological changes such as the decrease of cell number and loss of neurites in these cultures. 3. EGF increased the cell viability and neurofilament in neurons damaged by oxygen radicals. From above the results, it is suggested that oxygen radicals have a cytotoxic effect on cultured DRG neurons of neonatal mouse and selective neurotrophic factors such as EGF are, effective, in blocking the neurotoxicity induced by oxygen radicals in cultured spinal DRG neurons.

  • PDF

Neurotoxic Desensitizing Effect of Capsaicin on Peripheral Sensory Nerve Endings in Guinea Pig Bronchi (기니픽 기관지 말초신경에 대한 캡사이신의 탈감작 효과)

  • Jung, Yi-Sook;Cho, Tai-Soon;Moon, Chang-Hyun;Shin, Hwa-Sup
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.139-146
    • /
    • 1997
  • In the present study, capsaicin-induced desensitization of peripheral sensory nerves were investigated by using guinea pig bronchi, in which these nerves are stimulated with cap saicin to produce a contractile response via the release of sensory neuropeptides such as substance P and neurokinin A. The contractile response to capsaicin was inhibited by the combination of CP96345 and SR 48968 suggesting that the excitatory effect of capsaicin is mediated via both the tachykinin NK-1 and NK-2 receptor. Capsaicin produced in vitro-desensitization in dose-dependent manner, but after this in vitro-desensitization the response to NK-1 and NK-2 receptor agonist did not change. Systemic administration (s.c.) of capsaicin also desensitized significantly bronchial tissues but could not produce any change in the contractile response to the selective agonists of NK-1 and NK-2 receptor. Therefore, the present results suggest that functional desensitization to capsaicin-induced contractile response in guinea pig bronchi does not involve NK-1 and NK-2 receptor, while excitatory effect of capsaicin is mediated via both NK-1 and NK-2 receptor. In conclusion, it is suggested that capsaicin- induced excitation and desensitization involves somewhat different pathways.

  • PDF

Potential Effects of Microglial Activation Induced by Ginsenoside Rg3 in Rat Primary Culture: Enhancement of Type A Macrophage Scavenger Receptor Expression

  • Joo, Seong-Soo;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1164-1169
    • /
    • 2005
  • Brain microglia are phagocytic cells that are the major inflammatory response cells of the central nervous system and widely held to play important pathophysiologic roles in Alzheimer's disease (AD) in both potentially neurotoxic responses and potentially beneficial phagocytic responses. In the study, we examined whether ginsonoside Rg3, a by-product of red ginseng, enhances the microglial phagocytosis of $A{\beta}$. We found that Rg3 promoted $A{\beta}$ uptake, internalization, and digestion. Increased maximal $A{\beta}$ uptake was observed at 4 and 8 h after Rg3 pretreatment (25 ${\mu}g/mL$), and the internalized $A{\beta}$ was almost completely digested from cells within 36 h when pretreated with Rg3 comparing with single non-Rg3-treated groups. The expression of MSRA (type A MSR) was also up-regulated by Rg3 treatment in a dose- and time-dependent manner which was coincidently identified in western blots for MSRA proteins in cytosol. These results indicate that microglial phagocytosis of $A{\beta}$ may be enhanced by Rg3 and the effect of Rg3 on promoting clearance of $A{\beta}$ may be related to the MSRA-associated action of Rg3. Thus, stimulation of the MSRA might contribute to the therapeutic potentials of Rg3 in microglial phagocytosis and digestion in the treatment of AD.

The Effect of Aspalatone, a New Antithrombotic Agent, on the Specific Activity of Antioxidant Enzyme in the Rat Blood

  • Kim, Chin;Koo, Chang-Hui;Choi, Dong-Young;Cho, Yong-Joon;Choi, Jae-Ho;Im, Doo-Hyeon;Jhoo, Wang-Kee;Kim, Hyoung-Chun
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.348-352
    • /
    • 1996
  • The antioxidant efficacy of aspalatone, a new antithrombotic agent, has been recognized in the neurotoxic model and in the cardiotoxic model in proliminary studies. We examined the specific activity of antiosidnat enzyme in the rat blood following administrations of aspirin, maltol, aspirin together with maltol, salicylmaltol (major metabolite of aspalatone) and aspalatone, respectively. Our assessment showed that salicylmaltol, maltol, aspalatone enhanced antiperoxidative activity. In addition, neither aspirin nor combination of aspirin and maltol, showed any significant effect on the activity of antioxidant enzyme. Because $H_{2}$$O_{2}$ accumulation may stimulate the thrombogenesis in blood, the result suggests that the induction of blood antiperoxidative activity produced by aspalatone may have beneficial effects on the thrombogenesis.

  • PDF

Mulberry Silkworm, Bombyx mori L., as a Host for Neurotoxic Braconidae I. Insect-toxic Properties of Bracon Venom Gland Extract and Its Fractions

  • Madyarov, S.R.;Mirzaeva, G.S.;Otarbaev, D.O.;Khamidi, K.S.;Kamilova, S.I.;Akhmerov, R.N.;Khamraev, A.S.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.235-239
    • /
    • 2003
  • The silkworm Bombyx mori L. was studied as the potential “host” of popular in Uzbekistan biocontrol ectoparasite, entomophagous Bracon hebetor Say. Being one of representatives of economic-beneficial insects, the silkworm (larvae, pupae and imago) can be used as highly sensitive test organism for revealing of neuro toxic effects of insects venom as well as of their purified components in screening assays. In comparative aspect, except a mulberry silkworm, representatives of Uzbekistan pests cotton-boll worm Helycoverpa armigera Hbn., lesser mulberry pyralid Glyphodes pyloalis Wlk., codling moth Corpocapsa pomonella L., malaria mosquito Anopheles claviger and Colorado potato beetle Leptinotarsa decemlineata Say have been subjected to insect toxic test of bracon venom gland extract (VGE) and its fractions which were obtained by gel-chromatography on Sephadex G-100. The paralyzing effect of the VGE and its fractions was shown in a various degree on the pests.

The effect of herbal medicine on cultured cerebral cortical neurons induced by glutamate neurotoxicity (대뇌피질 신경세포에 미치는 glutamate 독성에 대한 한약재 효능연구)

  • Lee, Mi-Young;Kang, Bong-Joo;Yoon, Yoo-Sik;Hong, Seong-Gil;Gwag, Byoung-Joo;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.4 no.1 s.4
    • /
    • pp.99-114
    • /
    • 1998
  • The effect of herbal medicine on glutamate mediated neurotoxicity was studied in mouse neurons in primary culture. Immature cerebral cortex neurons (ED14) were maintained for up to 2 weeks in vitro, and we investigated the expression pattern of neuron differentiation and cytotoxicity of cell death, including LDH activity. Neuronal maturation initiated on day 7 and the susceptibility to glutamate-induced cell death was highly sensitive on Day 11 (Fig. 1). Thus, the exposure of the neurons to glutamate caused a dose$(0.1mM{\sim}1mM)$ and time$(4h{\sim}24h)$-dependent neurotoxicity(Fig. 4). Glutamate-induced neurodegeneration was prevented by Shipchondaebotang(SD), Yollyounggobondan(YG), Yugmijihwangwon(YJ) and the death of neurons exposed to glutamate was blocked by the NMDA receptor antagonist MK-801 (Fig. 5).

  • PDF

Effects of PCB Congeners in Rodent Neuronal Cells in Culture : Effects of Chitosan (PCB 이성질체가 설치류 신경세포에 미치는 영향: 키토산의 효과)

  • Kim, Sun-Young;Lee, Hyun-Gyo
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.279-285
    • /
    • 2007
  • The present study attempted to analyze the mechanism of PCB-induced neurotoxicity with respect to the PKC signaling. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total PKC activity at $[^3H]PDBu$ binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-alpha and-epsilon were activated with non-coplanar PCB exposure. The result suggests that coplanar PCBs have a PKC pathway different from non-coplanar PCBs. Activation of PKC with exposure was dampened with treatment of high molecular weight of chitosan. Chilean (M.W. > 1,000 kDa) inhibited the total activity of PKC induced by the non-coplanar PCBs. Translocation of PKC isoforms was also inhibited by the high molecular weight of chitosan. The study demonstrated that non-coplanar PCBs are more potent neurotoxic congeners than coplanar PCBs and the alteration of PKC activities by PCB exposure can be blocked with the treatment of chitosan. The results suggest a potential use of chitosan as a means of nutritional intervention to prevent the harmful effects of pollutant-derived diseases.

Capsaicinoids-induced Neurotoxic Desensitization in Guinea Pig: Antinociception and Loss of Substance P-like Immunoreactivity from Peripheral Sensory Nerve Endings in Bronchi

  • Jung, Yi-Sook;Lee, Buyean;Shin, Hwa-Sup;Kong, Jae-Yang;Park, No-Sang;Cho, Tai-Soon
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.256-259
    • /
    • 1995
  • Antinociceptive and desensitizing effects of systemically administered capsaicinoids (capsaicin and KR25018) were investigated in guinea pig. Nociceptive sensitivity to chemical stimulus was examined to test sensory function, and the content of substance P-like immunorractivity (SP-LI) in bronchi was determined as a peripheral marker of capsaicin-sensitive primary afferent neurons. Guinea pigs were pretreated s.c. with several doses of capsaicin (1,2.5,5, 10 mg/kg) or KR25018 (1, 2.5, 5, 10 mg/kg) one week prior to the experiments. Frequency of eye wiping was significantly decreased by capsaicin and KR25018 in a pretreatment dosedependent manner. In capsaicin- or KR25018-pretreated guinea pigs, there was a significant loss of SP-LI in bronchial tissue extracts. In summary, a newly synthesized capsaicin analogue H725018 exhibited antinociceptive effect against chemical stimulus in guinea pig, with comparable potency to capsaicin. This desensitizing activity of capsaicin or KR25018 might be related to the loss of SP-LI in peripheral afferent nerves.

  • PDF

Tetrabromobisphenol A Induces MMP-9 Expression via NADPH Oxidase and the activation of ROS, MAPK, and Akt Pathways in Human Breast Cancer MCF-7 Cells

  • Lee, Gi Ho;Jin, Sun Woo;Kim, Se Jong;Pham, Thi Hoa;Choi, Jae Ho;Jeong, Hye Gwang
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.93-101
    • /
    • 2019
  • Tetrabromobisphenol A (TBBPA), the most common industrial brominated flame retardant, acts as a cytotoxic, neurotoxic, and immunotoxicant, causing inflammation and tumors. However, the mechanism of TBBPA-induced matrix metalloproteinase-9 (MMP-9) expression in human breast cancer cells is not clear. In human breast cancer MCF-7 cells, treatment with TBBPA significantly induced the expression and promoter activity of MMP-9. Transient transfection with MMP-9 mutation promoter constructs verified that $NF-{\kappa}B$ and AP-1 response elements are responsible for the effects of TBBPA. Furthermore, TBBPA-induced MMP-9 expression was mediated by $NF-{\kappa}B$ and AP-1 transcription activation as a result of the phosphorylation of the Akt and MAPK signaling pathways. Moreover, TBBPA-induced activation of Akt/MAPK pathways and MMP-9 expression were attenuated by a specific NADPH oxidase inhibitor, and the ROS scavenger. These results suggest that TBBPA can induce cancer cell metastasis by releasing MMP-9 via ROS-dependent MAPK, and Akt pathways in MCF-7 cells.