• 제목/요약/키워드: Neuroprotective agents

검색결과 53건 처리시간 0.025초

Neuroprotective Agents in the Intensive Care Unit -Neuroprotective Agents in ICU -

  • Panahi, Yunes;Mojtahedzadeh, Mojtaba;Najafi, Atabak;Rajaee, Seyyed Mahdi;Torkaman, Mohammad;Sahebkar, Amirhossein
    • 대한약침학회지
    • /
    • 제21권4호
    • /
    • pp.226-240
    • /
    • 2018
  • Neuroprotection or prevention of neuronal loss is a complicated molecular process that is mediated by various cellular pathways. Use of different pharmacological agents as neuroprotectants has been reported especially in the last decades. These neuroprotective agents act through inhibition of inflammatory processes and apoptosis, attenuation of oxidative stress and reduction of free radicals. Control of this injurious molecular process is essential to the reduction of neuronal injuries and is associated with improved functional outcomes and recovery of the patients admitted to the intensive care unit. This study reviews neuroprotective agents and their mechanisms of action against central nervous system damages.

Flavonoids as anti-inflammatory and neuroprotective agents

  • Lee, Heesu;Selvaraj, Baskar;Yoo, Ki Yeon;Ko, Seong-Hee
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.33-41
    • /
    • 2020
  • Neuroinflammation is known as the main mechanism implicated in the advancement of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The main feature of neuroinflammation is associated with the activation of microglia. The activated microglia increase proinflammatory cytokine production and induce progressive neuronal cell death. Citrus flavonoids show neuroprotective effects that are associated with the anti-inflammatory action of flavonoids in neurodegenerative diseases. Among these citrus flavonoids, kaempferol, naringin, and nobiletin show inhibitory effects on nuclear factor-κB and mitogen-activated protein kinase signaling pathways that can modulate inflammatory conditions in microglial cells. In the present review, we present the anti-inflammatory activities of citrus flavonoids and therapeutic potential of flavonoids as neuroprotective agents.

Two Neuroprotective Compounds from Mushroom Daldinia concentrica

  • Lee, In-Kyoung;Bong-Sik Yun;Young-Ho Kim;Ick-Dong Yoo
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.691-691
    • /
    • 2002
  • In the course of our screening for neuroprotective agents, a new compound (1) was isolated together with a known compound, caruilignan C (2), from the fruiting body of Daldinia concentrica. Their structures were determined on the basis of various spectral studies. Both compounds exhibited neuroprotective effect against iron-induced neurodegeneration in a primary culture of mouse cortical neurons.

Two Neuroprotective Compounds from Mushroom Daldinia concentrica

  • Lee, In-Kyoung;Yun, Bong-Sik;Kim, Young-Ho;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.692-694
    • /
    • 2002
  • In the course of our screening for neuroprotective agents, a new compound (1) was isolated together with a known compound, caruilignan C (2), from the fruiting body of Daldinia concentrica. Their structures were determined on the basis of various spectral studies. Both compounds exhibited neuroprotective effect against iron-induced neurodegeneration in a primary culture of mouse cortical neurons.

Antioxidative and Neuroprotective Constituents Isolated from Opuntia ficus-indica var. saboten

  • Lee, Yong-Sup;Kim, Hyoung-Ja;Jung, Seo-Yun;Lee, Eun-Ha;Cho, Jung-Sook;Jin, Chang-Bae
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2007년도 Proceedings of The Convention of The Korean Society of Applied Pharmacology
    • /
    • pp.115-121
    • /
    • 2007
  • Opuntia ficus-indica var. saboten (Cactaceae) is widely cultivated in Jeju Island (South Korea) for use in the manufacture of health foods such as tea, jam and juice. Its fruit and stem have been traditionally used as oriental folk medicine to treat diabetes, hypertension, asthma, burns, edema and indigestion. During the search for naturally occurring antioxidative neuroprotective agents, it was found that the ethyl acetate fraction of the stems and fruits of Opuntia ficus-indica var. saboten exhibited potent antioxidant effect. Using a chromatographic fractionation method, several constituents were isolated from this fraction. Among isolates, KYS50182 showed the most potent in vitro and in vivo neuroprotective activities, suggesting that the flavonoid can serve as a lead structure for the development of neuroprotective agents by providing neuroprotection against oxidative and focal ischemic neuronal injuries.

  • PDF

Protective Effect of Extracts from Euryale ferox against Glutamate-induced Cytotoxicity in Neuronal Cells

  • Lee, Mi-Ra;Kim, Ji-Hyun;Son, Eun-Soon;Park, Hae-Ryong
    • Natural Product Sciences
    • /
    • 제15권3호
    • /
    • pp.162-166
    • /
    • 2009
  • Oxczaasssaidative stress plays an important role in neuronal cell death, which is associated with neurodegenerative conditions such as Alzheimer's and Parkinson's disease. This study evaluated the neuroprotective effect of Euryale ferox (EF) extracts against glutamate-induced cytotoxicity in hybridoma N18-RE-105 cells. Specifically, neuroprotective effects of methanol and ethanol extracts were evaluated by the MTT reduction assay. The ethanol extracts of EF displayed dose dependent protection against neuronal cell death induced by 20 mM of glutamate. Furthermore, the ethanol extracts of EF was sequentially fractionated with hexane, diethyl ether, ethyl acetate, and water layer according to degree of polarity. The hexane fractions exhibited neuroprotective effect against glutamate-stressed N18-RE-105 cells. Overall, results suggest that EF extracts can potentially be used as chemotherapeutic agents against neuronal diseases.

활성산소 소거활성에 따른 꾸지뽕잎 추출물의 신경세포 보호 효과 (Neuroprotective Effect according to Reactive Oxygen Species Scavenging Activity from Extracts of Cudrania tricuspidata Leaves)

  • 강용경;이은아;박해룡
    • 한국식품조리과학회지
    • /
    • 제28권6호
    • /
    • pp.821-828
    • /
    • 2012
  • In an attempt to identify the neuroprotective effect of Cudrania tricuspidata (CT) leaves against ROS (reactive oxygen species)-induced oxidative stress in neuronal cells, the extracts from CT leaves were investigated using PC12 cells and N18-RE-105 cells. The methanolic and ethanolic extracts from CT were denoted as CTM (Cudrania tricuspidata Leaves methanolic extracts) and CTE (Cudrania tricuspidata Leaves ethanolic extracts), respectively. The neuroprotective effects of the extracts were measured by DCF-DA assay, MTT reduction assay, and LDH release assay. The PC12 cells exposed to $H_2O_2$-induced oxidative stress and the N18-RE-105 cells exposed to glutamate-induced oxidative stress were treated with various concentrations of CTM and CTE. The results, CTM treatments resulted in the induction of a dose-dependent protective effect in PC12 cells and N18-RE-105 cells. Interestingly, CTE also showed neuroprotective effect in PC12 cells and N18-RE-105 cells. Therefore, these results suggest that CTM and CTE could be a new potential candidate as neuroprotective agents against ROS-induced oxidative stress in neuronal cells.

Development of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents

  • Jung, Jin A;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2020
  • FK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure-activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.

백서의 국부 뇌경색에 대한 당귀의 신경보호 효과 (The Neuroprotective Effects of Angelicae gigantis Radix on Focal Cerebral Ischemia in the Rat)

  • 정정욱;장우석;오용성;이소연;박치상;박창국
    • 대한한의학회지
    • /
    • 제24권2호
    • /
    • pp.204-212
    • /
    • 2003
  • Current therapy for acute ischemic stroke is highly focused on neuroprotective agents, and many herbal medicines have been challenged for experimental models. The aim of this study is to investigate whether Angelicae gigantis Radix can protect nerve cells against ischemic neural damage of middle cerebral artery occlusion (MCAO) in rats' brains. Rats were treated with Angelicae gigantis Radix immediately after 2 hours of MCAO for 7 days. On the 7th day, the brains of the rats were sliced through the hippocampus and dyedby c-Fos immunohistochemistry stain and cresyl violet stain for microscopic examination. The number of viable neurons and c-Fos immunoreactive cells in CA1 regions was counted. MCAO caused significant decrease in density of neurons and c-Fos immunoreactive cells compared to those of sham-operated rats. Administration of Angelicae gigantis Radix significantly elevated MCAO-induced decrease in density of neurons and c-Fos immunoreactive cells. These results suggest that the neuroprotective effect of Angelicae gigantis Radix against focal cerebral ischemia is related to c-Fos gene expression. Thus, these findings indicate that Angelicae gigantis Radix can be used for treatment and prevention of cerebral ischemia.

  • PDF

Microglia and neuroinflammation: implications in neurodegenerative diseases

  • Suk, Kyoung-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2007년도 Proceedings of The Convention of The Korean Society of Applied Pharmacology
    • /
    • pp.15-22
    • /
    • 2007
  • Increasing evidence indicates that microglia-driven chronic inflammatory responses playa pathological role in the central nervous system. Activation of microglia is pivotal in the initiation and progression of neuroinflammation. Inhibition of the microglial activation may provide an effective therapeutic intervention that alleviates the progression of the neurodegenerative diseases. Anti-inflammatory agents may be a useful candidate for such a therapeutic approach. Continual investigation of the mechanisms underlying microglial activation and regulation of neuroinflammation by endogenous or exogenous factors would not only lead to the discovery of novel neuroprotective agents, but also help to understand complex pathophysiology of neurodegenerative diseases.

  • PDF