DOI QR코드

DOI QR Code

Neuroprotective Agents in the Intensive Care Unit -Neuroprotective Agents in ICU -

  • Panahi, Yunes (Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences) ;
  • Mojtahedzadeh, Mojtaba (Research Center for Rational Use of Drugs, Tehran University of Medical Sciences) ;
  • Najafi, Atabak (Gastrointestinal Pharmacology Interest Group(GPIG), Universal Scientific Education and Research Network(USERN)) ;
  • Rajaee, Seyyed Mahdi (Gastrointestinal Pharmacology Interest Group(GPIG), Universal Scientific Education and Research Network(USERN)) ;
  • Torkaman, Mohammad (Department of Pediatrics, School of Medicine, Baqiyatallah University of Medical Sciences) ;
  • Sahebkar, Amirhossein (Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences)
  • Received : 2017.12.21
  • Accepted : 2018.11.14
  • Published : 2018.12.31

Abstract

Neuroprotection or prevention of neuronal loss is a complicated molecular process that is mediated by various cellular pathways. Use of different pharmacological agents as neuroprotectants has been reported especially in the last decades. These neuroprotective agents act through inhibition of inflammatory processes and apoptosis, attenuation of oxidative stress and reduction of free radicals. Control of this injurious molecular process is essential to the reduction of neuronal injuries and is associated with improved functional outcomes and recovery of the patients admitted to the intensive care unit. This study reviews neuroprotective agents and their mechanisms of action against central nervous system damages.

Keywords

Table 1 Potential neuroprotective agent in the intensive care unit for the management of hemorrhagic stroke, ischemic stroke and traumatic brain injuries.

DHOCBS_2018_v21n4_226_t0001.png 이미지

Table 1 Potential neuroprotective agent in the intensive care unit for the management of hemorrhagic stroke, ischemic stroke and traumatic brain injuries.

DHOCBS_2018_v21n4_226_t0001.png 이미지

Table 2 Other potential neuroprotectants in the intensive care unit.

DHOCBS_2018_v21n4_226_t0002.png 이미지

Table 2 Other potential neuroprotectants in the intensive care unit.

DHOCBS_2018_v21n4_226_t0002.png 이미지

References

  1. Jain KK. The handbook of neuroprotection. Humana: New York; 2011.
  2. Porter D, Johnston AM, Henning J. Medical Conditions Requiring Intensive Care. Journal of the Royal Army Medical Corps. 2009;155:141-146. https://doi.org/10.1136/jramc-155-02-13
  3. Peisker T, Koznar B, Stetkarova I, Widimsky P. Acute stroke therapy: A review. Trends in Cardiovascular Medicine. 2017;27:59-66. https://doi.org/10.1016/j.tcm.2016.06.009
  4. Tahir R, Pabaney A. Therapeutic hypothermia and ischemic stroke: A literature review. Surgical Neurology International. 2016;7:381. https://doi.org/10.4103/2152-7806.183492
  5. Gonzalez-Ibarra FP, Varon J, Lopez-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Frontiers in Neurology. 2011;2:4.
  6. Great Britain. Department of Health. Comprehensive critical care: a review of adult critical care services. Department of Health: London 2000.
  7. Parrillo JE, Dellinger RP. Critical care medicine: principles of diagnosis and management in the adult. Elsevier Mosby: St. Louis, Mo.; London 2008.
  8. Chong J, Dumont T, Francis-Frank L, Balaan M. Sepsis and Septic Shock. Critical Care Nursing Quarterly. 2015;38:111-120. https://doi.org/10.1097/CNQ.0000000000000052
  9. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign Guidelines Committee including The Pediatric S. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine. 2013;39:165-228. https://doi.org/10.1007/s00134-012-2769-8
  10. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. New England Journal of Medicine. 2013;369:840-851. https://doi.org/10.1056/NEJMra1208623
  11. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. Journal of the American Medical Association. 2009;302:2323-9. https://doi.org/10.1001/jama.2009.1754
  12. Mock C, Lormand JD, Goosen J, Joshipura M, Peden M. Guidelines for essential trauma care. Geneva : World Health Organization; 2004.
  13. Shen Q, Hiebert JB, Hartwell J, Thimmesch AR, Pierce JD. Systematic Review of Traumatic Brain Injury and the Impact of Antioxidant Therapy on Clinical Outcomes. Worldviews on Evidence-Based Nursing. 2016;13:380-389. https://doi.org/10.1111/wvn.12167
  14. Gruenbaum SE, Zlotnik A, Gruenbaum BF, Hersey D, Bilotta F. Pharmacologic Neuroprotection for Functional Outcomes After Traumatic Brain Injury: A Systematic Review of the Clinical Literature. CNS Drugs. 2016;30:791-806. https://doi.org/10.1007/s40263-016-0355-2
  15. Park E, Bell JD, Baker AJ. Traumatic brain injury: Can the consequences be stopped? Canadian Medical Association Journal. 2008;178:1163-1170. https://doi.org/10.1503/cmaj.080282
  16. Tromp G, Weinsheimer S, Ronkainen A, Kuivaniemi H. Molecular basis and genetic predisposition to intracranial aneurysm. Annals of Medicine. 2014;46:597-606. https://doi.org/10.3109/07853890.2014.949299
  17. Wills S, Ronkainen A, van der Voet M, Kuivaniemi H, Helin K, Leinonen E, et al. Familial intracranial aneurysms: an analysis of 346 multiplex Finnish families. Stroke. 2003;34:1370-4. https://doi.org/10.1161/01.STR.0000072822.35605.8B
  18. Guo Y, Li P, Guo Q, Shang K, Yan D, Du S, et al. Pathophysiology and Biomarkers in Acute Ischemic Stroke - A Review. Tropical Journal of Pharmaceutical Research. 2014;12:1097. https://doi.org/10.4314/tjpr.v12i6.35
  19. Liou AKF, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Progress in Neurobiology. 2003;69:103-142. https://doi.org/10.1016/S0301-0082(03)00005-4
  20. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology. 2007;35:495-516. https://doi.org/10.1080/01926230701320337
  21. Graham SH, Chen J. Programmed Cell Death in Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism. 2001;99-109.
  22. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica. 2009;30:379-387. https://doi.org/10.1038/aps.2009.24
  23. Sims NR, Zaidan E. Biochemical changes associated with selective neuronal death following short-term cerebral ischaemia. International Journal of Biochemistry & Cell Biology. 1995;27:531-50. https://doi.org/10.1016/1357-2725(95)00026-L
  24. Ndountse LT, Chan HM. Role of N-methyl-D-aspartate receptors in polychlorinated biphenyl mediated neurotoxicity. Toxicology Letters. 2009;184:50-5. https://doi.org/10.1016/j.toxlet.2008.10.013
  25. Wong PC, Cai H, Borchelt DR, Price DL. Genetically engineered mouse models of neurodegenerative diseases. Nature Neuroscience. 2002;5:633-9. https://doi.org/10.1038/nn0702-633
  26. Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Molecular Neurobiology. 2003;27:325-55. https://doi.org/10.1385/MN:27:3:325
  27. Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the bloodbrain barrier in tPA-dependent excitotoxic injury in mice. Journal of Cell Science. 2006;119:339-49. https://doi.org/10.1242/jcs.02734
  28. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacological Reviews. 2002;54:271-84. https://doi.org/10.1124/pr.54.2.271
  29. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection. Antioxidants & Redox Signaling. 2011;14:1505-1517. https://doi.org/10.1089/ars.2010.3576
  30. Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, et al. Antioxidant gene therapy against neuronal cell death. Pharmacology & Therapeutics. 2014;142:206-230. https://doi.org/10.1016/j.pharmthera.2013.12.007
  31. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surgical Neurology. 2006;66:232-245. https://doi.org/10.1016/j.surneu.2005.12.028
  32. Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular Mechanisms of Apoptosis in Cerebral Ischemia: Multiple Neuroprotective Opportunities. Molecular Neurobiology. 2007;37:7-38.
  33. Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. Journal of Neurochemistry. 2009;109:133-138. https://doi.org/10.1111/j.1471-4159.2009.05897.x
  34. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 Experimental treatments in acute stroke. Annals of Neurology. 2006;59:467-477. https://doi.org/10.1002/ana.20741
  35. Danysz W, Parsons CG. Neuroprotective potential of ionotropic glutamate receptor antagonists. Neurotoxicity Research. 2002;4:119-26. https://doi.org/10.1080/10298420290015872
  36. Schauwecker PE. Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain. Experimental Neurology. 2010;224:207-218. https://doi.org/10.1016/j.expneurol.2010.03.013
  37. Milani D, Cross JL, Anderton RS, Blacker DJ, Knuckey NW, Meloni BP. Neuroprotective efficacy of poly-arginine R18 and NA-1 (TAT-NR2B9c) peptides following transient middle cerebral artery occlusion in the rat. Neuroscience Research. 2017;114:9-15. https://doi.org/10.1016/j.neures.2016.09.002
  38. Milani D, Knuckey NW, Anderton RS, Cross JL, Meloni BP. The R18 Polyarginine Peptide Is More Effective Than the TAT-NR2B9c (NA-1) Peptide When Administered 60 Minutes after Permanent Middle Cerebral Artery Occlusion in the Rat. Stroke Research and Treatment. 2016;2016:1-9.
  39. Cook DJ, Teves L, Tymianski M. A Translational Paradigm for the Preclinical Evaluation of the Stroke Neuroprotectant Tat-NR2B9c in Gyrencephalic Nonhuman Primates. Science Translational Medicine. 2012;4:154ra133-154ra133.
  40. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, ter-Brugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebo-controlled trial. The Lancet Neurology. 2012;11:942-950. https://doi.org/10.1016/S1474-4422(12)70225-9
  41. Ayuso MI, Montaner J. Advanced neuroprotection for brain ischemia: an alternative approach to minimize stroke damage. Expert Opinion on Investigational Drugs. 2015;24:1137-1142. https://doi.org/10.1517/13543784.2015.1065040
  42. Marshall J, Wong KY, Rupasinghe CN, Tiwari R, Zhao X, Berberoglu ED, et al. Inhibition ofN-Methyl-d-aspartate-induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-induced Hyperpolarization of the Inner Mitochondrial Membrane Potential. Journal of Biological Chemistry. 2015;290:22030-22048. https://doi.org/10.1074/jbc.M115.662791
  43. Meloni BP, Brookes LM, Clark VW, Cross JL, Edwards AB, Anderton RS, et al. Poly-Arginine and Arginine-Rich Peptides are Neuroprotective in Stroke Models. Journal of Cerebral Blood Flow & Metabolism. 2015;35:993-1004. https://doi.org/10.1038/jcbfm.2015.11
  44. Fugere M, Appel J, Houghten RA, Lindberg I, Day R. Short Polybasic Peptide Sequences Are Potent Inhibitors of PC5/6 and PC7: Use of Positional Scanning-Synthetic Peptide Combinatorial Libraries as a Tool for the Optimization of Inhibitory Sequences. Molecular Pharmacology. 2006;71:323-332. https://doi.org/10.1124/mol.106.027946
  45. Akhtar MI, Ullah H, Hamid M. Magnesium, a drug of diverse use. Journal of Pakistan Medical Association. 2011;61:1220-5.
  46. Zhang X, Li Y, Del Gobbo LC, Rosanoff A, Wang J, Zhang W, Song Y. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension. 2016;68:324-33. https://doi.org/10.1161/HYPERTENSIONAHA.116.07664
  47. Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Guerrero-Romero F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacological Research. 2016;111:272-82. https://doi.org/10.1016/j.phrs.2016.06.019
  48. Sharma P, Chung C, Vizcaychipi M. Magnesium: The Neglected Electrolyte? A Clinical Review. Pharmacology & Pharmacy. 2014;05:762-772. https://doi.org/10.4236/pp.2014.57086
  49. McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. Journal of Neurotrauma. 1998;15:731-69. https://doi.org/10.1089/neu.1998.15.731
  50. Memon ZI, Altura BT, Benjamin JL, Cracco RQ, Altura BM. Predictive value of serum ionized but not total magnesium levels in head injuries. Scandinavian Journal of Clinical and Laboratory Investigation. 1995;55:671-7. https://doi.org/10.3109/00365519509075397
  51. Afshari D, Moradian N, Rezaei M. Evaluation of the intravenous magnesium sulfate effect in clinical improvement of patients with acute ischemic stroke. Clinical Neurology and Neurosurgery. 2013;115:400-4. https://doi.org/10.1016/j.clineuro.2012.06.001
  52. Bharosay A, Bharosay VV, Varma M, Saxena K, Sodani A, Saxena R. Correlation of Brain Biomarker Neuron Specific Enolase (NSE) with Degree of Disability and Neurological Worsening in Cerebrovascular Stroke. Indian J Clin Biochem. 2012;27:186-90. https://doi.org/10.1007/s12291-011-0172-9
  53. Gonzalez-Garcia S, Gonzalez-Quevedo A, Fernandez-Concepcion O, Pena-Sanchez M, Menendez-Sainz C, Hernandez-Diaz Z, et al. Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clinical Biochemistry, 2012;45:1302-7. https://doi.org/10.1016/j.clinbiochem.2012.07.094
  54. Lee TM, Ivers NM, Bhatia S, Butt DA, Dorian P, et al. Improving stroke prevention therapy for patients with atrial fibrillation in primary care: protocol for a pragmatic, cluster-randomized trial. Implementation Science. 2016;11:159. https://doi.org/10.1186/s13012-016-0523-2
  55. Lip GYH. Optimizing stroke prevention in elderly patients with atrial fibrillation. Journal of Thrombosis and Haemostasis 2016;14:2121-2123. https://doi.org/10.1111/jth.13480
  56. Mazurek M, Lip GY. To occlude or not? Left atrial appendage occlusion for stroke prevention in atrial fibrillation. Heart. 2017;103:93-95. https://doi.org/10.1136/heartjnl-2016-310255
  57. Mizukoshi G, Katsura K-I, Katayama Y. Urinary 8-hydroxy-2'-deoxyguanosine and serum $S100{\beta}$ in acute cardioembolic stroke patients. Neurological Research. 2013;27:644-646.
  58. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015;372:528-36. https://doi.org/10.1056/NEJMoa1408827
  59. Singh H, Jalodia S, Gupta MS, Talapatra P, Gupta V, Singh I. Role of magnesium sulfate in neuroprotection in acute ischemic stroke. Ann Indian Acad Neurol. 2012;15:177-80. https://doi.org/10.4103/0972-2327.99705
  60. Talkachova A, Jaakkola J, Mustonen P, Kiviniemi T, Hartikainen JEK, Palomaki A, et al. Stroke as the First Manifestation of Atrial Fibrillation. Plos One. 2016;11:e0168010. https://doi.org/10.1371/journal.pone.0168010
  61. Akdemir H, Kulakszoglu EO, Tucer B, Menku A, Postalc L, Gunald O. Magnesium Sulfate Therapy for Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Neurosurgery Quarterly. 2009;19:35-39. https://doi.org/10.1097/WNQ.0b013e31818d0ecf
  62. Chen T, Carter BS. Role of magnesium sulfate in aneurysmal subarachnoid hemorrhage management: A meta-analysis of controlled clinical trials. Asian J Neurosurg. 2011;6:26-31. https://doi.org/10.4103/1793-5482.85632
  63. Hassan T, Nassar M, Elhadi SM, Radi WK. Effect of magnesium sulfate therapy on patients with aneurysmal subarachnoid hemorrhage using serum S100B protein as a prognostic marker. Neurosurg Rev. 2012;35:421-7;discussion 427. https://doi.org/10.1007/s10143-011-0368-8
  64. Muroi C, Terzic A, Fortunati M, Yonekawa Y, Keller E. Magnesium sulfate in the management of patients with aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, dose-adapted trial. Surg Neurol. 2008;69:33-9;discussion 39. https://doi.org/10.1016/j.surneu.2007.07.015
  65. van den Bergh WM, Algra A, van Kooten F, Dirven CM, van Gijn J, Vermeulen M, et al. Magnesium sulfate in aneurysmal subarachnoid hemorrhage: a randomized controlled trial. Stroke. 2005;36:1011-5. https://doi.org/10.1161/01.STR.0000160801.96998.57
  66. Veyna RS, Seyfried D, Burke DG, Zimmerman C, Mlynarek M, Nichols V, et al. Magnesium sulfate therapy after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2002;96:510-4. https://doi.org/10.3171/jns.2002.96.3.0510
  67. Westermaier T, Stetter C, Vince GH, Pham M, Tejon JP, Eriskat J, et al. Prophylactic intravenous magnesium sulfate for treatment of aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, clinical study. Crit Care Med. 2010;38:1284-90. https://doi.org/10.1097/CCM.0b013e3181d9da1e
  68. Wong GK, Poon WS, Chan MT, Boet R, Gin T, Ng SC, et al. Plasma magnesium concentrations and clinical outcomes in aneurysmal subarachnoid hemorrhage patients: post hoc analysis of intravenous magnesium sulphate for aneurysmal subarachnoid hemorrhage trial. Stroke. 2010;41:1841-4. https://doi.org/10.1161/STROKEAHA.110.585232
  69. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, et al. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007;25:231-8. https://doi.org/10.1111/j.1460-9568.2006.05275.x
  70. Koch SM, Warters RD, Mehlhorn U. The simultaneous measurement of ionized and total calcium and ionized and total magnesium in intensive care unit patients. J Crit Care. 2002;17:203-5. https://doi.org/10.1053/jcrc.2002.35813
  71. Dabbagh OC, Aldawood AS, Arabi YM, Lone NA, Brits R, Pillay M. Magnesium supplementation and the potential association with mortality rates among critically ill non-cardiac patients. Saudi Med J. 2006;27:821-5.
  72. Mirrahimi B, Mortazavi A, Nouri M, Ketabchi E, Amirjamshidi A, Ashouri A, et al. Effect of magnesium on functional outcome and paraclinical parameters of patients undergoing supratentorial craniotomy for brain tumors: a randomized controlled trial. Acta Neurochir (Wien). 2015;157:985-91;discussion 991. https://doi.org/10.1007/s00701-015-2376-x
  73. James ML, Blessing R, Phillips-Bute BG, Bennett E, Laskowitz DT. S100B and brain natriuretic peptide predict functional neurological outcome after intracerebral haemorrhage. Biomarkers. 2009;14:388-94. https://doi.org/10.1080/13547500903015784
  74. Taylor F, Huffman MD, Macedo AF, Moore THM, Burke M, Davey Smith G, et al. Statins for the primary prevention of cardiovascular disease; 2013.
  75. Banach M, Serban C, Sahebkar A, Mikhailidis DP, Ursoniu S, Ray KK, et al. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med. 2015;13:229. https://doi.org/10.1186/s12916-015-0459-4
  76. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 2005;366:1267-78. https://doi.org/10.1016/S0140-6736(05)67394-1
  77. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotropic effects of statins. Indian J Endocrinol Metab. 2015;19:554-62. https://doi.org/10.4103/2230-8210.163106
  78. Bianconi V, Sahebkar A, Banach M, Pirro M. Statins, haemostatic factors and thrombotic risk. Curr Opin Cardiol; 2017.
  79. Chrusciel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP, et al. Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 2016;253:194-208. https://doi.org/10.1016/j.atherosclerosis.2016.07.897
  80. Derosa G, Maffioli P, Reiner Z, Simental-Mendia LE, Sahebkar A. Impact of Statin Therapy on Plasma Uric Acid Concentrations: A Systematic Review and Meta-Analysis. Drugs. 2016;76:947-56. https://doi.org/10.1007/s40265-016-0591-2
  81. Sahebkar A, Rathouska J, Derosa G, Maffioli P, Nachtigal P. Statin impact on disease activity and C-reactive protein concentrations in systemic lupus erythematosus patients: A systematic review and meta-analysis of controlled trials. Autoimmun Rev. 2016;15:344-53. https://doi.org/10.1016/j.autrev.2015.12.007
  82. Sahebkar A, Serban C, Ursoniu S, Mikhailidis DP, Undas A, Lip GY, et al. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost. 2016;115:520-32. https://doi.org/10.1160/th15-08-0620
  83. Sahebkar A, Rathouska J, Simental-Mendia LE, Nachtigal P. Statin therapy and plasma cortisol concentrations: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res. 2016;103:17-25. https://doi.org/10.1016/j.phrs.2015.10.013
  84. Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res. 2015;60:50-73. https://doi.org/10.1016/j.plipres.2015.08.003
  85. Sahebkar A, Ponziani MC, Goitre I, Bo S. Does statin therapy reduce plasma VEGF levels in humans? A systematic review and meta-analysis of randomized controlled trials. Metabolism. 2015;64:1466-76. https://doi.org/10.1016/j.metabol.2015.08.002
  86. Sahebkar A, Kotani K, Serban C, Ursoniu S, Mikhailidis DP, Jones SR, et al. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis. 2015;241:433-42. https://doi.org/10.1016/j.atherosclerosis.2015.05.022
  87. Serban C, Sahebkar A, Ursoniu S, Mikhailidis DP, Rizzo M, Lip GY, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep. 2015;5:9902. https://doi.org/10.1038/srep09902
  88. Sahebkar A, Serban C, Mikhailidis DP, Undas A, Lip GYH, Muntner P, et al. Association between statin use and plasma d-dimer levels: A systematic review and meta-analysis of randomised controlled trials. Thrombosis and Haemostasis. 2015;114:546-557. https://doi.org/10.1160/TH14-11-0937
  89. Sirtori CR. The pharmacology of statins. Pharmacol Res. 2014;88:3-11. https://doi.org/10.1016/j.phrs.2014.03.002
  90. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6:1004-10. https://doi.org/10.1038/79510
  91. Asahi M, Huang Z, Thomas S, Yoshimura S, Sumii T, Mori T, et al. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:722-9. https://doi.org/10.1038/sj.jcbfm.9600070
  92. Jain MK, Ridker PM. Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms. Nature Reviews Drug Discovery. 2005;4:977-987. https://doi.org/10.1038/nrd1901
  93. Moon GJ, Kim SJ, Cho YH, Ryoo S, Bang OY. Antioxidant effects of statins in patients with atherosclerotic cerebrovascular disease. J Clin Neurol. 2014;10:140-7. https://doi.org/10.3988/jcn.2014.10.2.140
  94. Parizadeh SMR, Azarpazhooh MR, Moohebati M, Nematy M, Ghayour-Mobarhan M, Tavallaie S, et al. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids. 2011;46:333-340. https://doi.org/10.1007/s11745-010-3517-x
  95. Laufs U, Gertz K, Huang P, Nickenig G, Bohm M, Dirnagl U, et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke. 2000;31:2442-9. https://doi.org/10.1161/01.STR.31.10.2442
  96. Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA. Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke. 2001;32:980-6. https://doi.org/10.1161/01.STR.32.4.980
  97. Moon GJ, Kim SJ, Cho YH, Ryoo S, Bang OY. Antioxidant Effects of Statins in Patients with Atherosclerotic Cerebrovascular Disease. Journal of Clinical Neurology. 2014;10:140. https://doi.org/10.3988/jcn.2014.10.2.140
  98. Montaner J, Chacon P, Krupinski J, Rubio F, Millan M, Molina CA, et al. Simvastatin in the acute phase of ischemic stroke: a safety and efficacy pilot trial. European Journal of Neurology. 2007;15:82-90. https://doi.org/10.1111/j.1468-1331.2007.02015.x
  99. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998;95:8880-5. https://doi.org/10.1073/pnas.95.15.8880
  100. Cordenier A, De Smedt A, Brouns R, Uyttenboogaart M, De Raedt S, Luijckx GJ, et al. Pre-stroke use of statins on stroke outcome: a meta-analysis of observational studies. Acta Neurol Belg. 2011;111:261-7.
  101. Hong KS, Lee JS. Statins in Acute Ischemic Stroke: A Systematic Review. Journal of Stroke. 2015;17:282-301. https://doi.org/10.5853/jos.2015.17.3.282
  102. Ali T, Badshah H, Kim TH, Kim MO. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-KB/JNK signaling pathway in aging mouse model. Journal of Pineal Research. 2015;58:71-85. https://doi.org/10.1111/jpi.12194
  103. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Current Neuropharmacology. 2017;15:434-443. https://doi.org/10.2174/1570159X14666161228122115
  104. Rios ER, Venancio ET, Rocha NF, Woods DJ, Vasconcelos S, Macedo D, et al. Melatonin: pharmacological aspects and clinical trends. Int J Neurosci. 2010;120:583-90. https://doi.org/10.3109/00207454.2010.492921
  105. Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005;26:412-9. https://doi.org/10.1016/j.tips.2005.06.006
  106. Watson N, Diamandis T, Gonzales-Portillo C, Reyes S, Borlongan CV. Melatonin as an Antioxidant for Stroke Neuroprotection. Cell Transplantation. 2016;25:883-891. https://doi.org/10.3727/096368915X689749
  107. Bandyopadhyay D, Biswas K, Bandyopadhyay U, Reiter RJ, Banerjee RK. Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical. J Pineal Res. 2000;29:143-51. https://doi.org/10.1034/j.1600-079X.2000.290303.x
  108. Chahbouni M, Escames G, Venegas C, Sevilla B, Garcia JA, Lopez LC, et al. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. Journal of Pineal Research. 2010;48:282-289. https://doi.org/10.1111/j.1600-079X.2010.00752.x
  109. Pei Z, Fung PC, Cheung RT. Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2003;34:110-8. https://doi.org/10.1034/j.1600-079X.2003.00014.x
  110. Koh PO. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J Vet Med Sci. 2008;70:747-50. https://doi.org/10.1292/jvms.70.747
  111. Beni SM. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF- B and AP-1. The FASEB Journal; 2003.
  112. Ozdemir D, Uysal N, Gonenc S, Acikgoz O, Sonmez A, Topcu A, et al. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res. 2005;54:631-7.
  113. Ozdemir D, Tugyan K, Uysal N, Sonmez U, Sonmez A, Acikgoz O, et al. Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neuroscience Letters. 2005;385:234-239. https://doi.org/10.1016/j.neulet.2005.05.055
  114. Fischer TW, Kleszczynski K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2'-deoxyguanosine) in ex vivo human skin. Journal of Pineal Research. 2013;54:303-312. https://doi.org/10.1111/jpi.12018
  115. Reiter RJ, Mayo JC, Tan D-X, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research. 2016;61:253-278. https://doi.org/10.1111/jpi.12360
  116. Chung E, Kong X, Goldberg MP, Stowe AM, Raman L. Erythropoietin-mediated neuroprotection in a pediatric mouse model of chronic hypoxia. Neurosci Lett. 2015;597:54-9. https://doi.org/10.1016/j.neulet.2015.04.026
  117. Jelkmann W. Physiology and Pharmacology of Erythropoietin. Transfusion Medicine and Hemotherapy. 2013;40:302-309. https://doi.org/10.1159/000356193
  118. Jurado Garcia JM, Torres Sanchez E, Olmos Hidalgo D, Alba Conejo E. Erythropoietin pharmacology. Clin Transl Oncol. 2007;9:715-22. https://doi.org/10.1007/s12094-007-0128-y
  119. Grasso G, Buemi M, Alafaci C, Sfacteria A, Passalacqua M, Sturiale A, et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci U S A. 2002;99:5627-31. https://doi.org/10.1073/pnas.082097299
  120. Chen G, Zhang S, Shi J, Ai J, Hang C. Effects of recombinant human erythropoietin (rhEPO) on JAK2/STAT3 pathway and endothelial apoptosis in the rabbit basilar artery after subarachnoid hemorrhage. Cytokine. 2009;45:162-168. https://doi.org/10.1016/j.cyto.2008.11.015
  121. Sanchez PE, Fares RP, Risso JJ, Bonnet C, Bouvard S, Le-Cavorsin M, et al. Optimal neuroprotection by erythropoietin requires elevated expression of its receptor in neurons. Proc Natl Acad Sci U S A. 2009;106:9848-53. https://doi.org/10.1073/pnas.0901840106
  122. Taoufik E, Petit E, Divoux D, Tseveleki V, Mengozzi M, Roberts ML, et al. TNF receptor I sensitizes neurons to erythropoietin- and VEGF-mediated neuroprotection after ischemic and excitotoxic injury. Proceedings of the National Academy of Sciences. 2008;105:6185-6190. https://doi.org/10.1073/pnas.0801447105
  123. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the bloodbrain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences. 2000;97:10526-10531. https://doi.org/10.1073/pnas.97.19.10526
  124. Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6:484-94. https://doi.org/10.1038/nrn1687
  125. Sepulveda P, Encabo A, Carbonell-Uberos F, Minana MD. BCL-2 expression is mainly regulated by JAK/STAT3 pathway in human CD34+ hematopoietic cells. Cell Death and Differentiation. 2006;14:378-380.
  126. Ding J, Wang J, Li QY, Yu JZ, Ma CG, Wang X, et al. Neuroprotection and CD131/GDNF/AKT Pathway of Carbamylated Erythropoietin in Hypoxic Neurons. Mol Neurobiol; 2016.
  127. Chen J, Chen J, Yang Z, Zhang X. Carbamylated Erythropoietin: A Prospective Drug Candidate for Neuroprotection. Biochemistry Insights. 2016;25.
  128. Clausen F, Marklund N, Lewen A, Hillered L. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma. 2008;25:1449-57. https://doi.org/10.1089/neu.2008.0585
  129. Kwon TH, Chao DL, Malloy K, Sun D, Alessandri B, Bullock MR. Tempol, a novel stable nitroxide, reduces brain damage and free radical production, after acute subdural hematoma in the rat. J Neurotrauma. 2003;20:337-45. https://doi.org/10.1089/089771503765172291
  130. Kato N, Yanaka K, Hyodo K, Homma K, Nagase S, Nose T. Stable nitroxide Tempol ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischemia. Brain Res. 2003;979:188-93. https://doi.org/10.1016/S0006-8993(03)02918-4
  131. Rak R, Chao DL, Pluta RM, Mitchell JB, Oldfield EH, Watson JC. Neuroprotection by the stable nitroxide Tempol during reperfusion in a rat model of transient focal ischemia. J Neurosurg. 2000;92:646-51. https://doi.org/10.3171/jns.2000.92.4.0646
  132. Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener H-C, et al. NXY-059 for Acute Ischemic Stroke. New England Journal of Medicine. 2006;354:588-600. https://doi.org/10.1056/NEJMoa052980
  133. Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, et al. NXY-059 for the Treatment of Acute Ischemic Stroke. New England Journal of Medicine. 2007;357:562-571. https://doi.org/10.1056/NEJMoa070240
  134. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TF. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide. 2003;9:64-76. https://doi.org/10.1016/j.niox.2003.09.005
  135. Maples KR, Ma F, Zhang YK. Comparison of the radical trapping ability of PBN, S-PPBN and NXY-059. Free Radic Res. 2001;34:417-26. https://doi.org/10.1080/10715760100300351
  136. Strid S, Borga O, Edenius C, Jostell KG, Odergren T, Weil A. Pharmacokinetics in renally impaired subjects of NXY-059, a nitrone-based, free-radical trapping agent developed for the treatment of acute stroke. Eur J Clin Pharmacol. 2002;58:409-15. https://doi.org/10.1007/s00228-002-0478-x
  137. Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siesjo BK, et al. Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis. 2002;10:219-33. https://doi.org/10.1006/nbdi.2002.0514
  138. Arii T, Kamiya T, Arii K, Ueda M, Nito C, Katsura K-I, et al. Neuroprotective effect of immunosuppressant FK506 in transient focal ischemia in rats: Therapeutic time window for FK506 in transient focal ischemia. Neurological Research. 2013;23:755-760.
  139. Saganova K, Galik J, Blasko J, Korimova A, Racekova E, Vanicky I. Immunosuppressant FK506: Focusing on neuroprotective effects following brain and spinal cord injury. Life Sciences. 2012;91:77-82. https://doi.org/10.1016/j.lfs.2012.06.022
  140. Sharifi Z-N, Abolhassani F, Zarrindast MR, Movassaghi S, Rahimian N, Hassanzadeh G. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat. Stroke Research and Treatment. 2012;2012:1-8.
  141. Zawadzka M, Kaminska B. A novel mechanism of FK506-mediated neuroprotection: Downregulation of cytokine expression in glial cells. Glia. 2005;49:36-51. https://doi.org/10.1002/glia.20092
  142. Pillans P. Experimental and Clinical Pharmacology: Immunosuppressants - mechanisms of action and monitoring. Australian Prescriber. 2006;29:99-101. https://doi.org/10.18773/austprescr.2006.064
  143. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351:2715-29. https://doi.org/10.1056/NEJMra033540
  144. Szydlowska K, Gozdz A, Dabrowski M, Zawadzka M, Kaminska B. Prolonged activation of ERK triggers glutamate-induced apoptosis of astrocytes: neuroprotective effect of FK506. Journal of Neurochemistry. 2010;113:904-918. https://doi.org/10.1111/j.1471-4159.2010.06656.x
  145. Muramoto M, Yamazaki T, Nishimura S, Kita Y. Detailed in vitro pharmacological analysis of FK506-induced neuroprotection. Neuropharmacology. 2003;45:394-403. https://doi.org/10.1016/S0028-3908(03)00168-0
  146. Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases: Basic and clinical pharmacology. The Cerebellum. 2007;6:308-314. https://doi.org/10.1080/14734220601142878
  147. Elbini Dhouib I, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM. A minireview on N-acetylcysteine: An old drug with new approaches. Life Sciences. 2016;151:359-363. https://doi.org/10.1016/j.lfs.2016.03.003
  148. Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain and Behavior. 2014;4:108-122. https://doi.org/10.1002/brb3.208
  149. Cuzzocrea S, Mazzon E, Costantino G, Serraino I, Dugo L, Calabro G, et al. Beneficial effects ofn-acetylcysteine on ischaemic brain injury. British Journal of Pharmacology. 2000;130:1219-1226. https://doi.org/10.1038/sj.bjp.0703421
  150. Sen O, Caner H, Aydin MV, Ozen O, Atalay B, Altinors N, et al. The effect of mexiletine on the level of lipid peroxidation and apoptosis of endothelium following experimental subarachnoid hemorrhage. Neurol Res. 2006;28:859-63. https://doi.org/10.1179/016164106X115099
  151. Findlay JM, Weir BK, Kanamaru K, Espinosa F. Arterial wall changes in cerebral vasospasm. Neurosurgery. 1989;25:736-45; discussion 745-6. https://doi.org/10.1227/00006123-198911000-00008
  152. Chen G, Shi J, Hu Z, Hang C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm. 2008;2008:716458.
  153. Guney O, Erdi F, Esen H, Kiyici A, Kocaogullar Y. N-acetylcysteine prevents vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010;73:42-9;discussion e3. https://doi.org/10.1016/j.surneu.2009.06.003
  154. Pereira Filho Nde A, Pereira Filho Ade A, Soares FP, Coutinho LM. Effect of N-acetylcysteine on vasospasm in subarachnoid hemorrhage. Arq Neuropsiquiatr. 2010;68:918-22. https://doi.org/10.1590/S0004-282X2010000600017
  155. Akca T, Canbaz H, Tataroglu C, Caglikulekci M, Tamer L, Colak T, et al. The Effect of N-Acetylcysteine on Pulmonary Lipid Peroxidation and Tissue Damage. Journal of Surgical Research. 2005;129:38-45. https://doi.org/10.1016/j.jss.2005.05.026
  156. Frishman WH, Saunders E. beta-Adrenergic blockers. J Clin Hypertens (Greenwich). 2011;13:649-53. https://doi.org/10.1111/j.1751-7176.2011.00515.x
  157. Koch-Weser J, Frishman WH. beta-Adrenoceptor antagonists: new drugs and new indications. N Engl J Med. 1981;305:500-6. https://doi.org/10.1056/NEJM198108273050907
  158. Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, et al. The novel beta-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab. 2000;20:1197-204. https://doi.org/10.1097/00004647-200008000-00005
  159. Schroeppel TJ, Fischer PE, Zarzaur BL, Magnotti LJ, Clement LP, Fabian TC, et al. Beta-adrenergic blockade and traumatic brain injury: protective? J Trauma. 2010;69:776-82. https://doi.org/10.1097/TA.0b013e3181e981b8
  160. Salim A, Hadjizacharia P, Brown C, Inaba K, Teixeira PGR, Chan L, et al. Significance of Troponin Elevation After Severe Traumatic Brain Injury. The Journal of Trauma: Injury, Infection, and Critical Care. 2008;64:46-52. https://doi.org/10.1097/TA.0b013e31815eb15a
  161. Riordan WP, Cotton BA, Norris PR, Waitman LR, Jenkins JM, Morris JA. $\beta$-Blocker Exposure in Patients With Severe Traumatic Brain Injury (TBI) and Cardiac Uncoupling. The Journal of Trauma: Injury, Infection, and Critical Care. 2007;63:503-511. https://doi.org/10.1097/TA.0b013e3181271c34
  162. Inaba K, Teixeira PGR, David J-S, Chan LS, Salim A, Brown C, et al. Beta-Blockers in Isolated Blunt Head Injury. Journal of the American College of Surgeons. 2008;206:432-438. https://doi.org/10.1016/j.jamcollsurg.2007.10.005
  163. Hadjizacharia P, O'Keeffe T, Brown CV, Inaba K, Salim A, Chan LS, et al. Incidence, risk factors, and outcomes for atrial arrhythmias in trauma patients. Am Surg. 2011;77:634-9.
  164. Cotton BA, Snodgrass KB, Fleming SB, Carpenter RO, Kemp CD, Arbogast PG, et al. Beta-Blocker Exposure is Associated With Improved Survival After Severe Traumatic Brain Injury. The Journal of Trauma: Injury, Infection, and Critical Care. 2007;62:26-35. https://doi.org/10.1097/TA.0b013e31802d02d0
  165. Chakraborti AK, Garg SK, Kumar R, Motiwala HF, Jadhavar PS. Progress in COX-2 inhibitors: a journey so far. Curr Med Chem. 2010;17:1563-93. https://doi.org/10.2174/092986710790979980
  166. Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, Ross ME, et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Annals of Neurology. 2004;55:668-675. https://doi.org/10.1002/ana.20078
  167. Stark DT, Bazan NG. Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci. 2011;31:13710-21. https://doi.org/10.1523/JNEUROSCI.3544-11.2011
  168. Capone ML, Tacconelli S, Sciulli MG, Patrignani P. Clinical pharmacology of selective COX-2 inhibitors. Int J Immunopathol Pharmacol. 2003;16:49-58. https://doi.org/10.1177/039463200301600107
  169. Bertolini A, Ottani A, Sandrini M. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr Med Chem. 2002;9:1033-43. https://doi.org/10.2174/0929867024606650
  170. Singh DP, Chopra K. Flavocoxid, dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, exhibits neuroprotection in rat model of ischaemic stroke. Pharmacol Biochem Behav. 2014;120:33-42. https://doi.org/10.1016/j.pbb.2014.02.006
  171. Ahmad M, Zhang Y, Liu H, Rose ME, Graham SH. Prolonged opportunity for neuroprotection in experimental stroke with selective blockade of cyclooxygenase-2 activity. Brain Research. 2009;1279:168-173. https://doi.org/10.1016/j.brainres.2009.05.020
  172. Vinukonda G, Csiszar A, Hu F, Dummula K, Pandey NK, Zia MT, et al. Neuroprotection in a rabbit model of intraventricular haemorrhage by cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-alpha inhibition. Brain. 2010;133:2264-2280. https://doi.org/10.1093/brain/awq107
  173. Sahebkar A. Curcumin: A Natural Multitarget Treatment for Pancreatic Cancer. Integrative Cancer Therapies. 2016;15:333-334. https://doi.org/10.1177/1534735415624139
  174. Huang S, Beevers CS. Pharmacological and clinical properties of curcumin. Botanics: Targets and Therapy. 2011;5.
  175. Mullaicharam AR, Maheswaran A. Pharmacological effects of curcumin. International journal of Nutrition, Pharmacology, Neurological Diseases. 2012;2:92. https://doi.org/10.4103/2231-0738.95930
  176. Ghandadi M, Sahebkar A. Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des; 2016.
  177. Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendia LE, Majeed M, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016;82:578-82. https://doi.org/10.1016/j.biopha.2016.05.037
  178. Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr. 2015;34:1101-8. https://doi.org/10.1016/j.clnu.2014.12.019
  179. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res. 2014;28:633-42. https://doi.org/10.1002/ptr.5045
  180. Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49:580-8. https://doi.org/10.1258/acb.2012.012040
  181. Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology. 2017;25:25-31. https://doi.org/10.1007/s10787-016-0301-4
  182. Panahi Y, Alishiri GH, Parvin S, Sahebkar A. Mitigation of Systemic Oxidative Stress by Curcuminoids in Osteoarthritis: Results of a Randomized Controlled Trial. J Diet Suppl. 2016;13:209-20. https://doi.org/10.3109/19390211.2015.1008611
  183. Panahi Y, Ghanei M, Hajhashemi A, Sahebkar A. Effects of Curcuminoids-Piperine Combination on Systemic Oxidative Stress, Clinical Symptoms and Quality of Life in Subjects with Chronic Pulmonary Complications Due to Sulfur Mustard: A Randomized Controlled Trial. J Diet Suppl. 2016;13:93-105. https://doi.org/10.3109/19390211.2014.952865
  184. Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids modulate pro-oxidant-antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res. 2013;27:1883-8. https://doi.org/10.1002/ptr.4952
  185. Panahi Y, Sahebkar A, Amiri M, Davoudi SM, Beiraghdar F, Hoseininejad SL, et al. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2012;108:1272-9. https://doi.org/10.1017/S0007114511006544
  186. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A. Therapeutic Effects of Curcumin in Inflammatory and Immune-Mediated Diseases: A Nature-Made Jack-of-All-Trades? J Cell Physiol; 2017.
  187. Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev; 2016.
  188. Derosa G, Maffioli P, Simental-Mendia LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394-404. https://doi.org/10.1016/j.phrs.2016.07.004
  189. Sahebkar A, Cicero AF, Simental-Mendia LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-alpha levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 2016;107:234-42. https://doi.org/10.1016/j.phrs.2016.03.026
  190. Lelli D, Pedone C, Sahebkar A. Curcumin and treatment of melanoma: The potential role of microRNAs. Biomed Pharmacother. 2017;88:832-834. https://doi.org/10.1016/j.biopha.2017.01.078
  191. Ramezani M, Hatamipour M, Sahebkar A. Promising Anti-tumor properties of Bisdemethoxycurcumin: A Naturally Occurring Curcumin Analogue. J Cell Physiol; 2017.
  192. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a MicroRNA Regulator in Cancer: A Review. Rev Physiol Biochem Pharmacol. 2016;171:1-38.
  193. Momtazi AA, Sahebkar A. Difluorinated Curcumin: A Promising Curcumin Analogue with Improved Anti-Tumor Activity and Pharmacokinetic Profile. Curr Pharm Des. 2016;22:4386-97. https://doi.org/10.2174/1381612822666160527113501
  194. Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res. 2017;117:218-227. https://doi.org/10.1016/j.phrs.2016.12.037
  195. Teymouri M, Pirro M, Johnston TP, Sahebkar A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors; 2016.
  196. Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, et al. Curcumin: A new candidate for melanoma therapy? Int J Cancer. 2016;139:1683-95. https://doi.org/10.1002/ijc.30224
  197. Sahebkar A, Henrotin Y. Analgesic efficacy and safety of curcuminoids in clinical practice: A systematic review and meta-analysis of randomized controlled trials. Pain Medicine (United States). 2016;17:1192-1202.
  198. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendia LE, Sahebkar A. Curcumin Lowers Serum Lipids and Uric Acid in Subjects With Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial. J Cardiovasc Pharmacol. 2016;68:223-9. https://doi.org/10.1097/FJC.0000000000000406
  199. Ganjali S, Blesso CN, Banach M, Pirro M, Majeed M, Sahebkar A. Effects of curcumin on HDL functionality. Pharmacol Res. 2017;119:208-218. https://doi.org/10.1016/j.phrs.2017.02.008
  200. Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med. 2014;22:851-7. https://doi.org/10.1016/j.ctim.2014.07.006
  201. Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol. 2014;11:123.
  202. Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al. Lipid lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Archives of Medical Science. 2017;13:965-1005.
  203. Zabihi NA, Pirro M, Johnston TP, Sahebkar A. Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes. Curr Pharm Des; 2016.
  204. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, et al. Treatment of Non-alcoholic Fatty Liver Disease with Curcumin: A Randomized Placebo-controlled Trial. Phytother Res. 2016;30:1540-8. https://doi.org/10.1002/ptr.5659
  205. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendia LE, Sahebkar A. Efficacy and Safety of Phytosomal Curcumin in Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Drug Res (Stuttg); 2017.
  206. Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, et al. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway in experimental traumatic brain injury. J Neuroinflammation. 2014;11:59. https://doi.org/10.1186/1742-2094-11-59
  207. Sun Y, Dai M, Wang Y, Wang W, Sun Q, Yang G-Y, et al. Neuroprotection and Sensorimotor Functional Improvement by Curcumin after Intracerebral Hemorrhage in Mice. Journal of Neurotrauma. 2011;28:2513-2521. https://doi.org/10.1089/neu.2011.1958
  208. Yang Z, Zhao T, Zou Y, Zhang JH, Feng H. Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunology Letters. 2014;160:89-95. https://doi.org/10.1016/j.imlet.2014.03.005
  209. Arai K, Wu J, Li Q, Wang X, Yu S, Li L, et al. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway. PLoS ONE. 2013;8:e59843. https://doi.org/10.1371/journal.pone.0059843
  210. Alderson P, Roberts I. Corticosteroids in acute traumatic brain injury: systematic review of randomised controlled trials. BMJ. 1997;314:1855-9. https://doi.org/10.1136/bmj.314.7098.1855
  211. Sandercock PAG, Soane T, Sandercock PAG. Corticosteroids for acute ischaemic stroke; 2011.
  212. Roberts I, Sydenham E, Roberts I. Barbiturates for acute traumatic brain injury; 2012.
  213. Bell JD. In Vogue: Ketamine for Neuroprotection in Acute Neurologic Injury. Anesthesia & Analgesia. 2017;1.
  214. Adibhatla RM, Hatcher JF. Citicoline mechanisms and clinical efficacy in cerebral ischemia. J Neurosci Res. 2002;70:133-9. https://doi.org/10.1002/jnr.10403
  215. Hurtado O, Hernandez-Jimenez M, Zarruk JG, Cuartero MI, Ballesteros I, Camarero G, et al. Citicoline (CDP-choline) increases Sirtuin1 expression concomitant to neuroprotection in experimental stroke. J Neurochem. 2013;126:819-26. https://doi.org/10.1111/jnc.12269
  216. Subiros N, Perez-Saad H, Aldana L, Gibson CL, Borgnakke WS, Garcia-del-Barco D. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke. Neurological Research. 2016;38:950-958. https://doi.org/10.1080/01616412.2016.1235249
  217. Sofroniew MV, Howe CL, Mobley WC. Nerve Growth Factor Signaling, Neuroprotection, and Neural Repair. Annual Review of Neuroscience. 2001;24:1217-1281. https://doi.org/10.1146/annurev.neuro.24.1.1217
  218. Alzheimer C, Werner S. Fibroblast growth factors and neuroprotection. Adv Exp Med Biol. 2002;513:335-51.
  219. Gora-Kupilas K, Josko J. The neuroprotective function of vascular endothelial growth factor (VEGF). Folia Neuropathol. 2005;43:31-9.
  220. Plane JM, Shen Y, Pleasure DE, Deng W. Prospects for Minocycline Neuroprotection. Archives of Neurology. 2010;67.
  221. Amiri-Nikpour MR, Nazarbaghi S, Hamdi-Holasou M, Rezaei Y. An open-label evaluator-blinded clinical study of minocycline neuroprotection in ischemic stroke: gender-dependent effect. Acta Neurologica Scandinavica. 2015;131:45-50. https://doi.org/10.1111/ane.12296
  222. Wakai A, McCabe A, Roberts I, Schierhout G, Wakai A. Mannitol for acute traumatic brain injury; 2013.
  223. Aydin MV, Caner H, Sen O, Ozen O, Atalay B, Cekinmez M, et al. Effect of melatonin on cerebral vasospasm following experimental subarachnoid hemorrhage. Neurological Research. 2013;27:77-82.
  224. Ayer RE, Sugawara T, Chen W, Tong W, Zhang JH. Melatonin decreases mortality following severe subarachnoid hemorrhage. Journal of Pineal Research. 2008;44:197-204. https://doi.org/10.1111/j.1600-079X.2007.00508.x
  225. Zausinger S, Westermaier T, Plesnila N, Steiger HJ, Schmid-Elsaesser R. Neuroprotection in Transient Focal Cerebral Ischemia by Combination Drug Therapy and Mild Hypothermia: Comparison With Customary Therapeutic Regimen. Stroke. 2003;34:1526-1532. https://doi.org/10.1161/01.STR.0000070841.31224.29