• 제목/요약/키워드: Neuronal Damage

검색결과 355건 처리시간 0.028초

Phospholipase $A_2(PLA_2)$ 약침(藥鍼)이 중대뇌동맥폐색(中大腦動脈閉塞)으로 유발(誘發)된 흰쥐의 신경손상(神經損傷) 보호(保護) 효과(效果)에 미치는 영향 (The Protective Effect of Phospholipase $A_2(PLA_2)$ Herbal-acupuncture against the Neuronal Damage Induced by Middle Cerebral Artery Occulsion(MCAO) in Rats.)

  • 김성민;정태영;임성철;서정철;김미려;양재하;한상원
    • Korean Journal of Acupuncture
    • /
    • 제21권3호
    • /
    • pp.89-96
    • /
    • 2004
  • Objectives : In order to prove the effect of Phospholipase $A_2(PLA_2)$ Herbal-acupuncture, this experimental studies were performed by using rats that had neuronal damage due to the Middle Cerebral Artery Occulsion(MCAO). Methods : Microdialysis probes were implanted into the coordinate of striatum of anesthetized rats which consist of sham-operated 8 rats, MCAO-operated 8 rats and $PLA_2$ Herbal-acupuncture administrated 8 rats before MCAO operating. The $PLA_2$ Herbal-acupuncture(0.5mg/kg) was administrated to rats 30 minutes before having an operation causing the MCAO. The surgical excision lead the cross resected brain to the acute ischemic state. The brain was sliced in 2mm thickness and stained with cresyl violet buffer for the measurement of cerebral infarcted area and volume. Results : Based on the result of the tissue inspection for the cerebral ischemic cell, $PLA_2$ Herbal-acupuncture significantly protect neurocytes. Conclusions : We suggest $PLA_2$ Herbal-acupuncture produces protective effects against the neuronal damage induced by MCAO. Therefore, $PLA_2$ Herbal-acupuncture may prevent delayed neuronal death(DND) in selectively vulnerable focal areas of the brain effectively.

  • PDF

Pre-ischemic Treatment with Ampicillin Reduces Neuronal Damage in the Mouse Hippocampus and Neostriatum after Transient Forebrain Ischemia

  • Lee, Kyung-Eon;Kim, Seul-Ki;Cho, Kyung-Ok;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.287-291
    • /
    • 2008
  • Ampicillin, a $\beta$-lactam antibiotic, has been reported to induce astrocytic glutamate transporter-l which plays a crucial role in protecting neurons against glutamate excitotoxicity. We investigated the effect of ampicillin on neuronal damage in the mouse hippocampus and neostriatum following transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery for 40 min. Ampicillin was administered post-ischemically (for 3 days) and/or pre-ischemically (for $3{\sim}5$ days until one day before the onset of ischemia). Pre- and post-ischemic treatment with ampicillin (50 mg/kg/day or 200 mg/kg/day) prevented ischemic neuronal death in the medial CAI area of the hippocampus as well as the neostriatum in a dose-dependent manner. In addition, ischemic neuronal damage was reduced by pre-ischemic treatment with ampicillin (200 mg/kg/day). In summary, our results suggest that ampicillin plays a functional role as a chemical preconditioning agent that protects hippocampal neurons from ischemic insult.

Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus

  • Shin, Myoung Cheol;Lee, Tae-Kyeong;Lee, Jae-Chul;Kim, Hyung Il;Park, Chan Woo;Cho, Jun Hwi;Kim, Dae Won;Ahn, Ji Hyeon;Won, Moo-Ho;Lee, Choong-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.47-57
    • /
    • 2022
  • Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

A Simple Method for Predicting Hippocampal Neurodegeneration in a Mouse Model of Transient Global Forebrain Ischemia

  • Cho, Kyung-Ok;Kim, Seul-Ki;Cho, Young-Jin;Sung, Ki-Wug;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권4호
    • /
    • pp.167-172
    • /
    • 2006
  • In the present study, we developed a simple method to predict the neuronal cell death in the mouse hippocampus and striatum following transient global forebrain ischemia by evaluating both cerebral blood flow and the plasticity of the posterior communicating artery (PcomA). Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery (BCCAO) for 30 min. The regional cerebral blood flow (rCBF) was measured by laser Doppler flowmetry. The plasticity of PcomA was visualized by intravascular perfusion of India ink solution. When animals had the residual cortical microperfusion less than 15% as well as the smaller PcomA whose diameter was less than one third compared with that of basilar artery, neuronal damage in the hippocampal subfields including CA1, CA2, and CA4, and in the striatum was consistently observed. Especially, when mice met these two criteria, marked neuronal damage was observed in CA2 subfield of the hippocampus. In contrast, after transient BCCAO, neuronal damage was consistently produced in the striatum, dependent more on the degree of rCBF reduction than on the plasticity of PcomA. The present study provided simple and highly reproducible criteria to induce the neuronal cell death in the vulnerable mice brain areas including the hippocampus and striatum after transient global forebrain ischemia.

백선피 70% 에탄올 추출물의 비수용성 분획물의 뇌세포 보호 효과 (Neuroprotective Effect of the Water-insoluble fraction of Root Barks of Dictamnus dasycarpus 70% Ethanolic Extract on Glutamate-Induced Oxidative Damage in Mouse Hippocampal HT22 Cells)

  • 최현규;이동성;리빈;전기용;정길생;김윤철
    • 생약학회지
    • /
    • 제42권2호
    • /
    • pp.175-181
    • /
    • 2011
  • Oxidative stress or accumulation of reactive oxygen species (ROS) leads neuronal cellular death and dysfunction, and it contributes to neuronal degenerative disease such as Alzheimer's disease, Parkinson's disease and stroke. Glutamate is one of the major excitatory neurotransmitter in the central nervous system (CNS). Glutamate contributes to fast synaptic transmission, neuronal plasticity, outgrowth and survival, behavior, learning and memory. In spite of these physiological functions, high concentration of glutamate causes neuronal cell damage, acute insults and chronic neuronal neurodegenerative diseases. Heme oxygenase-1 (HO-1) enzyme plays an important role of cellular antioxidant system against oxidant injury. NNMBS020, the water-insoluble fraction of the 70% EtOH extract of root barks of Dictamnus dasycarpus, showed dominant neuroprotective effects on glutamate-induced neurotoxicity in mouse hippocampal HT22 cells by induced the expression of HO-1 and increased HO activity. In mouse hippocampal HT22 cells, NNMBS020 makes the nuclear accumulation of Nrf2 and stimulates extracellular signal-regulated kinase (ERK) pathway. The ERK MAPK pathway inhibitor significantly reduced NNMBS020-induced HO-1 expression, whereas the JNK and p38 inhibitors did not. In conclusion, the water-insoluble fraction of the 70% EtOH extract of root barks of D. dasycarpus (NNMBS020) significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 and ERK pathway in mouse hippocampal HT22 cells.

Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain

  • Ha, Seung Cheol;Han, A Reum;Kim, Dae Won;Kim, Eun-A;Kim, Duk-Soo;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제46권7호
    • /
    • pp.370-375
    • /
    • 2013
  • Ischemia is characterized by oxidative stress and changes in the antioxidant defense system. Our recent in vitro study showed that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects cortical astrocytes against oxidative stress. In the current study, we examined the effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on ischemia-induced neuronal damage in a gerbil ischemia/reperfusion models. Extensive neuronal death in the hippocampal CA1 area was observed 4 days after ischemia/reperfusion. Intraperitoneal injection of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (0.3 mg/kg body weight) significantly prevented neuronal death in the CA1 region of the hippocampus in response to transient forebrain ischemia. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride administration reduced ischemia-induced increases in reactive oxygen species levels and malondialdehyde content. It also attenuated the associated reductions in glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities. Taken together, our results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against ischemia-induced neuronal damage by reducing oxidative stress through its antioxidant actions.

죽력과 생강즙이 중대뇌동맥 폐쇄에 의한 뇌허혈 손상에 미치는 영향 (Bambusae Calulis in Liquamen (Jukryuk) and Zingiberis Rhizoma Juice's (Saengkang- juice's) Effect on Ischemic Damage Secondary to MCA Occlusion in Mice)

  • 류주열;김영균;권정남
    • 대한한의학회지
    • /
    • 제23권3호
    • /
    • pp.134-144
    • /
    • 2002
  • Objective : The purpose of this study was to investigate the effect of Jukryuk and Saengkang-juices on cerebral vascular ischemia (CVI) of the middle cerebral artery (MCA). Method : By admiuistration Jukryuk and Saengkang-juices, we compared treated groups with untreated groups, in view of five points as follows: 1) cerebral damage; 2) damaged area of ischemia; 3) cerebral edema; 4) the number of neuronal cells adjacent to the areas damaged by ischemia; and 5) the number of neuronal cells adjacent to the areas damaged by ischemia Results : In this experiment, the effect of Jukryuk and Saengkang-juices was determined by inducing cerebral vascular ischemia after occluding the middle cerebral artery (MCA) in mice, and making observations and comparisons such as alterations in damaged areas and neuronal cellular changes in the brain. Conclusions : According to the above results, Jukryuk and Saengkang-juices can protect the cerebral vascular ischemia.

  • PDF

Epicatechin Prevents Methamphetamine-Induced Neuronal Cell Death via Inhibition of ER Stress

  • Kang, Youra;Lee, Ji-Ha;Seo, Young Ho;Jang, Jung-Hee;Jeong, Chul-Ho;Lee, Sooyeun;Jeong, Gil-Saeng;Park, Byoungduck
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.145-151
    • /
    • 2019
  • Methamphetamine (METH) acts strongly on the nervous system and damages neurons and is known to cause neurodegenerative diseases such as Alzheimer's and Parkinson's. Flavonoids, polyphenolic compounds present in green tea, red wine and several fruits exhibit antioxidant properties that protect neurons from oxidative damage and promote neuronal survival. Especially, epicatechin (EC) is a powerful flavonoid with antibacterial, antiviral, antitumor and antimutagenic effects as well as antioxidant effects. We therefore investigated whether EC could prevent METH-induced neurotoxicity using HT22 hippocampal neuronal cells. EC reduced METH-induced cell death of HT22 cells. In addition, we observed that EC abrogated the activation of ERK, p38 and inhibited the expression of CHOP and DR4. EC also reduced METH-induced ROS accumulation and MMP. These results suggest that EC may protect HT22 hippocampal neurons against METH-induced cell death by reducing ER stress and mitochondrial damage.

Effect of Pioglitazone on Excitotoxic Neuronal Damage in the Mouse Hippocampus

  • Lee, Choong Hyun;Yi, Min-Hee;Chae, Dong Jin;Zhang, Enji;Oh, Sang-Ha;Kim, Dong Woon
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.261-267
    • /
    • 2015
  • Pioglitazone (PGZ), a synthetic peroxisome proliferator-activated receptor ${\gamma}$ agonist, is known to regulate inflammatory process and to have neuroprotective effects against neurological disorders. In the present study, we examined the effects of 30 mg/kg PGZ on excitotoxic neuronal damage and glial activation in the mouse hippocampus following intracerebroventricular injection of kainic acid (KA). PGZ treatment significantly reduced seizure-like behavior. PGZ had the neuroprotective effect against KA-induced neuronal damage and attenuated the activations of astrocytes and microglia in the hippocampal CA3 region. In addition, MPO and $NF{\kappa}B$ immunoreactivities in the glial cells were also decreased in the PGZ-treated group. These results indicate that PGZ had anticonvulsant and neuroprotective effects against KA-induced excitotocix injury, and that neuroprotective effect of PGZ might be due to the attenuation of KA-induced activation in astrocytes and microglia as well as KA-induced increases in MPO and $NF{\kappa}B$.

Protective Effect of Fucoidan Extract from Ecklonia cava on Hydrogen Peroxide-Induced Neurotoxicity

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Park, Sang Hyun;Kwon, Bong Seok;Kim, Gun-Hee;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.40-49
    • /
    • 2018
  • We evaluated the antioxidant activity and neuronal cell-protective effect of fucoidan extract from Ecklonia cava (FEC) on hydrogen peroxide ($H_2O_2$)-induced cytotoxicity in PC-12 and MC-IXC cells to assess its protective effect against oxidative stress. Antioxidant activities were examined using the ABTS radical scavenging activity and malondialdehyde-inhibitory effect, and the results showed that FEC had significant antioxidant activity. Intracellular ROS contents and neuronal cell viability were investigated using the DCF-DA assay and MTT reduction assay. FEC also showed remarkable neuronal cell-protective effect compared with vitamin C as a positive control for both $H_2O_2$-treated PC-12 and MC-IXC cells. Based on the neuronal cell-protective effects, mitochondrial function was analyzed in PC-12 cells, and FEC significantly restored mitochondrial damage by increasing the mitochondrial membrane potential (${\Delta}{\Psi}m$) and ATP levels and regulating mitochondrial-mediated proteins (p-AMPK and BAX). Finally, the inhibitory effects against acetylcholinesterase (AChE), which is a critical hydrolyzing enzyme of the neurotransmitter acetylcholine in the cholinergic system, were investigated ($IC_{50}$ value = 1.3 mg/ml) and showed a mixed (competitive and noncompetitive) pattern of inhibition. Our findings suggest that FEC may be used as a potential material for alleviating oxidative stress-induced neuronal damage by regulating mitochondrial function and AChE inhibition.