References
- Apostolides, Z. and Weisburger, J. H. (1995) Screening of tea clones for inhibition of PhIP mutagenicity. Mutat. Res. 326, 219-225. https://doi.org/10.1016/0027-5107(94)00175-5
- Barr, A. M., Panenka, W. J., MacEwan, G. W., Thornton, A. E., Lang, D. J., Honer, W. G. and Lecomte, T. (2006) The need for speed: an update on methamphetamine addiction. J. Psychiatry Neurosci. 31, 301-313.
- Belt, E. J., Stockmann, H. B., Delis-van Diemen, P. M., Bril, H., Tijssen, M., van Essen, H. F., Heymans, M. W., Belien, J. A., Carvalho, B., Cillessen, S. A. and Meijer, G. A. (2014) Expression of apoptosis regulating proteins identifies stage II and III colon cancer patients with high risk of recurrence. J. Surg. Oncol. 109, 255-265. https://doi.org/10.1002/jso.23495
- Bhattacharyya, A., Mandal, D., Lahiry, L., Sa, G. and Das, T. (2004) Black tea protects immunocytes from tumor-induced apoptosis by changing Bcl-2/Bax ratio. Cancer Lett. 209, 147-154. https://doi.org/10.1016/j.canlet.2003.12.025
- Blount, J. W., Ferruzzi, M., Raftery, D., Pasinetti, G. M. and Dixon, R. A. (2012) Enzymatic synthesis of substituted epicatechins for bioactivity studies in neurological disorders. Biochem. Biophys. Res. Commun. 417, 457-461. https://doi.org/10.1016/j.bbrc.2011.11.139
-
Chhunchha, B., Fatma, N., Kubo, E., Rai, P., Singh, S. P. and Singh, D. P. (2013) Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-
${\kappa}B$ regulation. Am. J. Physiol. Cell Physiol. 304, C636-C655. https://doi.org/10.1152/ajpcell.00345.2012 - Cuevas, E., Limon, D., Perez-Severiano, F., Diaz, A., Ortega, L., Zenteno, E. and Guevara, J. (2009) Antioxidant effects of epicatechin on the hippocampal toxicity caused by amyloid-beta 25-35 in rats. Eur. J. Pharmacol. 616, 122-127. https://doi.org/10.1016/j.ejphar.2009.06.013
- Davidson, C., Gow, A. J., Lee, T. H. and Ellinwood, E. H. (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res. Brain Res. Rev. 36, 1-22. https://doi.org/10.1016/S0165-0173(01)00054-6
- Debette, S. (2013) Vascular risk factors and cognitive disorders. Rev. Neurol. (Paris) 169, 757-764. https://doi.org/10.1016/j.neurol.2013.07.022
- Eisch, A. J., O'Dell, S. J. and Marshall, J. F. (1996) Striatal and cortical NMDA receptors are altered by a neurotoxic regimen of methamphetamine. Synapse 22, 217-225. https://doi.org/10.1002/(SICI)1098-2396(199603)22:3<217::AID-SYN3>3.0.CO;2-F
- Geetha, T., Garg, A., Chopra, K. and Pal Kaur, I. (2004) Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat. Res. 556, 65-74. https://doi.org/10.1016/j.mrfmmm.2004.07.003
- Giovanni, A., Liang, L. P., Hastings, T. G. and Zigmond, M. J. (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. 64, 1819-1825. https://doi.org/10.1046/j.1471-4159.1995.64041819.x
- Gupta, S. C., Francis, S. K., Nair, M. S., Mo, Y. Y. and Aggarwal, B. B. (2013a) Azadirone, a limonoid tetranortriterpene, induces death receptors and sensitizes human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through a p53 protein-independent mechanism: evidence for the role of the ROS-ERK-CHOP-death receptor pathway. J. Biol. Chem. 288, 32343-32356. https://doi.org/10.1074/jbc.M113.455188
- Gupta, S. C., Francis, S. K., Nair, M. S., Mo, Y. Y. and Aggarwal, B. B. (2013b) Azadirone, a limonoid tetranortriterpene, induces death receptors and sensitizes human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through a p53 protein-independent mechanism: evidence for the role of the ROS-ERK-CHOP-death receptor pathway. J. Biol. Chem. 288, 32343-32356. https://doi.org/10.1074/jbc.M113.455188
- Hanasaki, Y., Ogawa, S. and Fukui, S. (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 16, 845-850. https://doi.org/10.1016/0891-5849(94)90202-X
- Hanson, G. R., Rau, K. S. and Fleckenstein, A. E. (2004) The methamphetamine experience: a NIDA partnership. Neuropharmacology 47 Suppl 1, 92-100.
- Ito, Y., Yamada, M., Tanaka, H., Aida, K., Tsuruma, K., Shimazawa, M., Hozumi, I., Inuzuka, T., Takahashi, H. and Hara, H. (2009) Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol. Dis. 36, 470-476. https://doi.org/10.1016/j.nbd.2009.08.013
- Jayanthi, S., Deng, X., Bordelon, M., McCoy, M. T. and Cadet, J. L. (2001) Methamphetamine causes differential regulation of prodeath and anti-death Bcl-2 genes in the mouse neocortex. FASEB J. 15, 1745-1752. https://doi.org/10.1096/fj.01-0025com
- Jayanthi, S., Deng, X., Noailles, P. A., Ladenheim, B. and Cadet, J. L. (2004) Methamphetamine induces neuronal apoptosis via crosstalks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 18, 238-251. https://doi.org/10.1096/fj.03-0295com
- Jayanthi, S., Ladenheim, B. and Cadet, J. L. (1998) Methamphetamine- induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann. N. Y. Acad. Sci. 844, 92-102. https://doi.org/10.1111/j.1749-6632.1998.tb08224.x
- Jia, J., Xiao, Y., Wang, W., Qing, L., Xu, Y., Song, H., Zhen, X., Ao, G., Alkayed, N. J. and Cheng, J. (2013) Differential mechanisms underlying neuroprotection of hydrogen sulfide donors against oxidative stress. Neurochem. Int. 62, 1072-1078. https://doi.org/10.1016/j.neuint.2013.04.001
- Katiyar, S. K., Agarwal, R. and Mukhtar, H. (1994) Inhibition of spontaneous and photo-enhanced lipid peroxidation in mouse epidermal microsomes by epicatechin derivatives from green tea. Cancer Lett. 79, 61-66. https://doi.org/10.1016/0304-3835(94)90063-9
- Kempf, S. J., Buratovic, S., von Toerne, C., Moertl, S., Stenerlow, B., Hauck, S. M., Atkinson, M. J., Eriksson, P. and Tapio, S. (2014) Ionising radiation immediately impairs synaptic plasticity-associated cytoskeletal signalling pathways in HT22 cells and in mouse brain: an in vitro/in vivo comparison study. PLoS ONE 9, e110464. https://doi.org/10.1371/journal.pone.0110464
- Lauro, C., Cipriani, R., Catalano, M., Trettel, F., Chece, G., Brusadin, V., Antonilli, L., van Rooijen, N., Eusebi, F., Fredholm, B. B. and Limatola, C. (2010) Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology 35, 1550-1559. https://doi.org/10.1038/npp.2010.26
- Lee, K. Y., Jeong, E. J., Huh, J., Cho, N., Kim, T. B., Jeon, B. J., Kim, S. H., Kim, H. P. and Sung, S. H. (2012) Cognition-enhancing and neuroprotective activities of the standardized extract of Betula platyphylla bark and its major diarylheptanoids. Phytomedicine 19, 1315-1320. https://doi.org/10.1016/j.phymed.2012.09.012
- Marshall, J. F., Belcher, A. M., Feinstein, E. M. and O'Dell, S. J. (2007) Methamphetamine-induced neural and cognitive changes in rodents. Addiction 102 Suppl 1, 61-69. https://doi.org/10.1111/j.1360-0443.2006.01780.x
- Meredith, C. W., Jaffe, C., Ang-Lee, K. and Saxon, A. J. (2005) Implications of chronic methamphetamine use: a literature review. Harv. Rev. Psychiatry 13, 141-154. https://doi.org/10.1080/10673220591003605
- Miyatake, M., Narita, M., Shibasaki, M., Nakamura, A. and Suzuki, T. (2005) Glutamatergic neurotransmission and protein kinase C play a role in neuron-glia communication during the development of methamphetamine-induced psychological dependence. Eur. J. Neurosci. 22, 1476-1488. https://doi.org/10.1111/j.1460-9568.2005.04325.x
- Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558. https://doi.org/10.1016/0896-6273(89)90043-3
- Nakagawa, T. and Yokozawa, T. (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol. 40, 1745-1750. https://doi.org/10.1016/S0278-6915(02)00169-2
- O'Dell, S. J. and Marshall, J. F. (2005) Neurotoxic regimens of methamphetamine induce persistent expression of phospho-c-Jun in somatosensory cortex and substantia nigra. Synapse 55, 137-147. https://doi.org/10.1002/syn.20098
- Ono, Y., Shimazawa, M., Ishisaka, M., Oyagi, A., Tsuruma, K. and Hara, H. (2012) Imipramine protects mouse hippocampus against tunicamycin-induced cell death. Eur. J. Pharmacol. 696, 83-88. https://doi.org/10.1016/j.ejphar.2012.09.037
- Pallast, S., Arai, K., Wang, X., Lo, E. H. and van Leyen, K. (2009) 12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress. J. Neurochem. 111, 882-889. https://doi.org/10.1111/j.1471-4159.2009.06379.x
- Park, S. K., Sanders, B. G. and Kline, K. (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res. Treat. 124, 361-375. https://doi.org/10.1007/s10549-010-0786-2
- Prasad, S., Yadav, V. R., Ravindran, J. and Aggarwal, B. B. (2011) ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. Cancer Res. 71, 538-549. https://doi.org/10.1158/0008-5472.CAN-10-3121
- Pubill, D., Canudas, A. M., Pallas, M., Camins, A., Camarasa, J. and Escubedo, E. (2003) Different glial response to methamphetamineand methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedebergs Arch. Pharmacol. 367, 490-499. https://doi.org/10.1007/s00210-003-0747-y
- Raudensky, J. and Yamamoto, B. K. (2007) Effects of chronic unpredictable stress and methamphetamine on hippocampal glutamate function. Brain Res. 1135, 129-135. https://doi.org/10.1016/j.brainres.2006.12.002
- Ravindran, J., Gupta, N., Agrawal, M., Bala Bhaskar, A. S. and Lakshmana Rao, P. V. (2011) Modulation of ROS/MAPK signaling pathways by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism. Apoptosis 16, 145-161. https://doi.org/10.1007/s10495-010-0554-0
- Refaat, A., Abd-Rabou, A. and Reda, A. (2014) TRAIL combinations: the new 'trail' for cancer therapy (review). Oncol. Lett. 7, 1327-1332. https://doi.org/10.3892/ol.2014.1922
- Salminen, A., Kauppinen, A., Suuronen, T., Kaarniranta, K. and Ojala, J. (2009) ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J. Neuroinflammation 6, 41. https://doi.org/10.1186/1742-2094-6-41
- Shimazu, K., Zhao, M., Sakata, K., Akbarian, S., Bates, B., Jaenisch, R. and Lu, B. (2006) NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn. Mem. 13, 307-315. https://doi.org/10.1101/lm.76006
- Simonian, N. A. and Coyle, J. T. (1996) Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36, 83-106. https://doi.org/10.1146/annurev.pa.36.040196.000503
- Son, Y., Kim, S., Chung, H. T. and Pae, H. O. (2013) Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528, 27-48. https://doi.org/10.1016/B978-0-12-405881-1.00002-1
- Stanciu, M., Wang, Y., Kentor, R., Burke, N., Watkins, S., Kress, G., Reynolds, I., Klann, E., Angiolieri, M. R., Johnson, J. W. and De-Franco, D. B. (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 12200-12206. https://doi.org/10.1074/jbc.275.16.12200
- Sung, B., Ravindran, J., Prasad, S., Pandey, M. K. and Aggarwal, B. B. (2010) Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J. Biol. Chem. 285, 35418-35427. https://doi.org/10.1074/jbc.M110.172767
- Talloczy, Z., Martinez, J., Joset, D., Ray, Y., Gacser, A., Toussi, S., Mizushima, N., Nosanchuk, J. D., Goldstein, H., Loike, J., Sulzer, D. and Santambrogio, L. (2008) Methamphetamine inhibits antigen processing, presentation, and phagocytosis. PLoS Pathog. 4, e28. https://doi.org/10.1371/journal.ppat.0040028
- Walsh, S. L. and Wagner, G. C. (1992) Motor impairments after methamphetamine-induced neurotoxicity in the rat. J. Pharmacol. Exp. Ther. 263, 617-626.
- Yang, E. J., Park, G. H. and Song, K. S. (2013) Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology 39, 114-123. https://doi.org/10.1016/j.neuro.2013.08.012
- Yoon, M. J., Kang, Y. J., Kim, I. Y., Kim, E. H., Lee, J. A., Lim, J. H., Kwon, T. K. and Choi, K. S. (2013) Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis 34, 1918-1928. https://doi.org/10.1093/carcin/bgt137
Cited by
- Sophora Tomentosa Extract Prevents MPTP-Induced Parkinsonism in C57BL/6 Mice Via the Inhibition of GSK-3β Phosphorylation and Oxidative Stress vol.11, pp.2, 2019, https://doi.org/10.3390/nu11020252
- Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells vol.46, pp.6, 2019, https://doi.org/10.1007/s11033-019-05037-6
- Betulin Protects HT-22 Hippocampal Cells against ER Stress through Induction of Heme Oxygenase-1 and Inhibition of ROS Production vol.14, pp.12, 2019, https://doi.org/10.1177/1934578x19896684
- Sulforaphane alleviates methamphetamine-induced oxidative damage and apoptosis via the Nrf2-mediated pathway in vitro and in vivo vol.31, pp.1, 2019, https://doi.org/10.1080/09540105.2020.1784099
- Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders vol.9, pp.2, 2019, https://doi.org/10.3390/biomedicines9020099
- Aromadendrin Protects Neuronal Cells from Methamphetamine-Induced Neurotoxicity by Regulating Endoplasmic Reticulum Stress and PI3K/Akt/mTOR Signaling Pathway vol.22, pp.5, 2019, https://doi.org/10.3390/ijms22052274
- Thunbergia laurifolia Leaf Extract Inhibits Glutamate-Induced Neurotoxicity and Cell Death through Mitophagy Signaling vol.10, pp.11, 2021, https://doi.org/10.3390/antiox10111678
- Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-020-80917-7