• Title/Summary/Keyword: Neuronal Cultures

Search Result 76, Processing Time 0.026 seconds

Nitric Oxide-Mediated Cytotoxicity of Manganese in Basal Ganglia Neuronal Cells (대뇌 기저핵 신경세포에서 Nitric Oxide를 매개로 한 망간의 세포독성)

  • Jung, Yong-Wook;Bae, Jae-Hoon;Song, Dae-Kyu;Park, Won-Kyun;Ko, Bok-Hyun;Kim, Doo-Hie;Shin, Dong-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.4
    • /
    • pp.459-466
    • /
    • 1999
  • Objectives:eurotoxicity is mediated by nitric oxide(NO) in the rat primary neuronal cultures and assess the effect of $Mn^{2+}$ on the N-methyl-D aspartate(NMDA) receptors. Methods: We have used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay to examine the effect of cytotoxicity of $MnCl_2$ in neuronal cells , NO production was determined by measuring nirites, a stable oxidation product of NO. The neurons in the rat that contains neuronal nitric oxide synthase(nNOS) were examined by immunofluorescence and confocal microscopy. The effects of $Mn^{2+}$ on the NMDA receptors was assesed by the whole cell voltage clamp technique. Results: We showed that the NO release and NOS expression was increased with 500uM $MnCl_2$ treatment and an NOS inhibitors, $N^G-nitro-L-arginine$, prevented neurotoxicity elicited by manganese. In the electrophysiological study, $Mn^{2+}$ does not block or activate the NMDA receptors and not pass through the NMDA receptors in a neurons of basal ganglia. Conclusions: It is concluded that manganese neurotoxicity in basal ganglia was partially mediated by nitric oxide in the cell culture model.

  • PDF

Protection of spontaneous and glutamate-induced neuronal damages by Soeumin Sibjeundaibo-tang and Soyangin Sibimijihwang-tang in cultured mice cerebrocortical cells

  • Lee, Mi-Young;Ma, Jin-Yeul;Choo, Young-Kug;Jung, Kyu-Yong
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Soeumin Sibjeundaibo-tang (SJDBT) and Soyangin Sibimijihwang-tang (SMJHT) have been used traditionally to improve the systemic blood circulation and biological energy production in the patients with circulatory and neuronal diseases. The object of this study is to determine the protective effects of SJDBT and SMJHT extracts on the spontaneous and glutamate-induced neuronal damages in cultured cells derived from mice cerebral cortex. At 14 days after beginning the cultures, the activity of lactate dehydrogenase released into the culture media was significantly decreased by treatment of cerebroneuronal cells with SJDBT and SMJHT (0.1 mg/ml) for 7 days. By comparison with the normal cells, cerebroneuronal morphology was dramatically changed by treatment of glutamate (1 mM) for 12 hrs, and this was conspicuously recovered by pretreatment of cerebroneural cells with SJDBT and SMJHT (0.1-1.0 mg/ml) for 2 days. Moreover, glutamated-induced DNA fragmentation was also protected by pretreatment of cerebroneuronal cells with those extracts. These results suggest that naturally occurring and glutamate-induced degeneration of cultured cerebrocortical cells may be related, in part, to the process of apoptotic cell death. The pharmacological properties of SJDBT and SMJHT extracts to improve cerebroneuronal degeneration may be considered as one of useful medicines that can prevent cerebrocortical impairments resulted from age-dependent and excitotoxicity-induced neuronal degeneration in human brain.

  • PDF

Effects of Kangwhalyupung-tang on the Cerebral Neuronal Damage induced by Ischemia (강활유풍탕(羌活愈風湯)이 뇌허혈(腦虛血)로 유도된 대뇌신경세포손상(大腦神經細胞損傷)에 미치는 영향)

  • Mun Beong-Sun;Hwang Chung-Yeon;Kim Keong-Yo;Lee Geon-Mok;Sung Kang-Keong;Lee Dae-Yong;Lee Seoung-Geun
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Objective : Experimental studies have been done to elucidate the effect of kangwhalyupung-tang(KWYPT) on neuronal cell damage induced by brain ischemia. Method : The cytotoxic effect of ischemia was measured in the MTS assay cultures. MTS assay, INT assay, neurofilament(NF) enzymeimmuno assay(EIA). And the KWYPT on ischemia-induced neurotoxicity were examined by in vitro assays. Results : 1. The KWYPT protected effectively neuronal cell-death resulted from brain ischemia induced by the treatment of $95%N_2/5%CO_2$ for 10 min in those dependent fashion. 2. The KWYPT effectively increased the amount of NF resulting from brain ischemia, induced by the treatment of $95%N_2/5%CO_2$ for 15 min in those dependent fashions. Conclusions : KWYPT protects the brain ischemia-induced neurotoxicity through the increase of cell viability and of neurofilament in dose-dependent manner.

  • PDF

Primary Cultured Brain Cells as Screening Methods for Natural Products Acting on Glutamatergic Neurons (일차배양 뇌세포를 이용한 글루타메이트성 신경에 작용하는 천연물의 검색방법)

  • 박미정;김소라;문애리;김승희;김영중
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.444-449
    • /
    • 1995
  • Primary cultures of rat cortical and chicken embryonic brain cells were employed to establish a reliable screening method for natural products blocldng or enhancing glutamate-induced neurotoxicity. Exposure of primary cultured rat cortical cells or chicken embryonic brain cells to high dose of glutamate resulted in the fragmentation of neutites and consequent neuronal death. The level of cytoplasmic lactate dehydrogenase(LDH), indicator for cell survival in cultures, was significantly reduced at exposure to glutamate. For the practical application of the methods, series of concentrations of plants extracts and positive control were applied prior to the glutamate insult on primary cultures of rat cortical and chicken embryonic, brain cells. Relative LDH level in cells was measured for the estimation of the effect of the test materials on the glutamatergic neurons. The validity of the present screening method for natural products acting on glutamatergic neurons was examined with dextromethorphan, a known glutamatergic antagonist. The treatment of 100 $\mu{M}$ dextromethorphan prevented the reduction of LDH in rat cortical and chicken embryonic brain cells caused by glutamate insult keeping 60% and 90% of LDH level in normal control, respectively. Above results indicate that primary cultures of rat cortical and chicken embryonic brain cells could be proper systems for the screening of potential natural agents acting on glutamatergic, neurons. Between the two types of cultures, primary culture of chicken embryonic brain cells seemed to be a better system for the primary screening, since it is technically easier and economical compared to that of rat cortical cells.

  • PDF

Anti-neuronal Injury Effect of Evodiae Fructus Water Extract in Sodium Cyanide-induced SK-N-SH Cell Lines (Sodium Cyanide로 유도된 신경아세포종 세포주에서 오수유의 신경상해 보호효과)

  • Jang Woo-Seok;Lee So-Yeon;Yoon Hyeon-Deok;Shin Oh-chul;Park Chang-Gook;Park Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.135-145
    • /
    • 2005
  • Objectives : This study investigated effect of Evodiae fructus water extract (EVOR) on apoptotic cell death induced by NaCN in SK-N-SH neuroblastoma cell lines. NaCN stimulates glutamate release which can activate glutamate receptors to initiate excitotoxic processes. This study examines the role of EVOR in mediating NaCN-induced cytotoxicity. Methods & Results : Cytotoxicity was assessed by measuring lactate dehydrogenase (LDH) in the culture media. NaCN(0.1mM) produced cytotoxicity following 12hrs of incubation. NaCN-induced cytotoxicity was partially blocked by EVOR. The treatment of EVOR in simultaneous exposure of cultures to NaCN provided complete protection against cytotoxicity. NaCN-induced cytotoxicity was found to inhibit DNA fragmentation, repaired by cell cycle and simultaneous exposure to NaCN, regenerated with neurite outgrowh by EVOR. These results indicate thaf damage by NaCN in neumnal cell cultures was repaired by EVOR, whereas NaCN-induced cytotoxicity is blocked Primarily by activation of anti-apoptosis. Conclusions : These results suggest that EVOR may be beneficial for the treatment of dementia and other degenerative problems of the central nervous system.

  • PDF

Eugenol Inhibits Excitotoxins-Induced Delayed Neurotoxicity, Oxidative Injury and Convulsion

  • Wie, Myung-Bok;Cheon, Byung-Hwa;Lee, Seon-Young;Son, Kun-Ho;Song, Dong-Keun;Shin, Tae-Kyun;Kim, Hyoung-Chun
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.275-282
    • /
    • 2006
  • In previous our studies, we have reported that eugenol derived from Eugenia caryophyllata(Myrtaceace) exhibits acute N-methyl-D-aspartate(NMDA)- and oxygen/glucose deprivation-induced neurotoxicity in primary cortical cultures and protects hippocampal neurons from global ischemia. In this study, we investigated whether the extracts and fractions of E. caryophyllata or eugenol shows the neuroprotective effects against delayed neuronal injury evoked by NMDA or ${\alpha}$-amino-3-hydroxy-5-methylisoxazole propionate(AMPA), and oxidative damage induced by arachidonic acid-, hydrogen peroxide-, $FeCl_2$/ascorbic acid-, and buthionine sulfoximine(BSO) in primary cortical cultures. We examined the neurotoxicity of eugenol itself in cultures and inhibitory effect of eugenol on NMDA- or kainate(KA)-induced convulsion in BALB/c mice. Each water, methanol extract and methanol fraction of E. caryophyllata was significantly attenuated NMDA-induced delayed neurotoxicity, respectively. Eugenol exhibited a significant inhibitory action against the convulsion evoked by NMDA and KA, and reduced delayed or brief neurotoxicity induced by NMDA, AMPA, and various oxidative injuries. These results suggest that eugenol derived from E. caryophyllata may contribute the neuroprotection against delayed-type excitotoxicity and excitotoxins-mediated convulsion through the amelioration of oxidative stress.

Enhancement of Neural Death by Nerve Growth Factor

  • Chung, Jun-Mo;Hong, Jin-Hee
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.200-204
    • /
    • 1996
  • Nerve growth factor (NGF) is literally known to promote neural differentiation and survival in several peripheral and central neurons. Thus, it is Widely believed that NGF may serve as a therapeutic agent for many types of neuronal diseases. One of the mechanisms suggested to explain the protective role of NGF is that the trophic factor can prevent the increase of intracellular calcium ions which might be responsible for neural death. To examine whether or not the calcium hypothesis works even under pathological conditions, we applied NGF to cultures deprived of glucose. Surprisingly, what was observed here is that NGF rather promoted cell death under a glucose-deprived condition. What we call the NGF paradox phenomenon occurred in a calcium concentration-dependent manner, indirectly suggesting that NGF might increase intracellular calcium ions in cells deprived of glucose. This suggestion is further supported by the fact that nifedipine, a well-known L-type calcium channel blocker, could block the cell death potentiated by NGF. Here it is still premature to propose the complete mechanism underlying the NGF paradox phenomenon. However, this study certainly indicates that NGF as a therapeutic agent for neuronal diseases should be carefully considered before use.

  • PDF

Neuroprotective effects of vitamin C (비타민 C의 신경 보호 효과)

  • Sim, In-Seop;Lee, Kyeong-Hui;Kim, Eun-Jin;Cha, Myeong-Hun;Kim, Eun-Jeong;Kim, Ga-Min;Kim, Hyeong-A;Lee, Bae-Hwan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • Vitamin C ascorbic acid (AA) and dehydroascorbic acid (DHA) as an antioxidant have been shown to have protective effects in experimental neurological disorder models such as stroke, ischemia, and epileptic seizures. The present study was conducted to examine the protective effect of AA and DHA on Kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures (OHSC). After 12h KA treatment, significant delayed neuronal death was detected in CA3 region, but not in CA1. Intermediate dose of AA and DHA pretreatment significantly prevented cell death and inhibit ROS level, mitochondrial dysfunction and capase-3 activation in CA3 region. In the case of low or high dose, however, AA or DHA pretreatment were not effective. These data suggest that both AA and DHA pretreatment have neuroprotective effects on KA-induced neuronal injury depending on the concentration, by means of inhibition of ROS generation, mitochondrial dysfunction, and caspase-dependent apoptotic pathway.

  • PDF

Protective Effect of an Ethanol Extract Mixture of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix on Oxidative Neuronal Damage (Curcuma longae Radix, Phellinus linteus 및 Scutellariae Radix 혼합추출물의 산화성 신경세포손상 보호효과)

  • Kim, Joo-Youn;Kweon, Ki-Yeon;Lee, Hong-Kyu;Kim, Seung-Hwan;Yoo, Jae-Kuk;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Previous work demonstrated that an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcuma longae radix, Phellinus linteus, and Scutellariae radix markedly inhibits $A{\beta}$ (25-35)-induced neurotoxicity. The present study was performed to further verify the neuroprotective effect of HS0608 on oxidative and ischemic cerebral injury using cultured rat cortical neurons and rats. Exposure of cultured cortical neurons to $100\;{\mu}M$ hydrogen peroxide ($H_2O_2$) induced neuronal apoptotic death. At $10-100{\mu}g/ml$, HS0608 inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $H_2O_2$ in primary cultures of rat cortical neurons. In vivo, HS0608 prevented cerebral ischemic injury induced by 2-h middle cerebral artery occlusion (MCAO) and 24-h reperfusion. The ischemic infarct and edema were significantly reduced in rats that received HS0608 (200 mg/kg). These results suggest that the anti-oxidative properties of HS0608 may be responsible for its neuroprotective effect against focal cerebral ischemic injury and that HS0608 may have a therapeutic role in neurodegenerative diseases such as stroke.

A Study of Neuroproctective Effect of Bupleuri Radix on Hippocampal Neurons (시호(柴胡)의 뇌해마 신경세포 보호효능에 대한 연구)

  • Lee, Won-Chul;Shin, Kwang-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2004
  • Objective : This study was performed to investigate neuroprotective effects of Bupleuri Radix against oxidative and ischemic damages. Method : To observe the neuroprotective effects against ischemic damage, ischemic insult was induced by oxygen/glucose deprivation (OGD) on organotypic hippocampal slice cultures (OHSC) from 1 week-old Sprague-Dawley rats. Propidium iodide (PI) fluorescence-stained neuronal dead-cell areas, area percentages and TUNEL-positive apoptotic cells in CA1 and dentate gyrus, and LDH levels in culture media of the OHSC were measured following Bupleuri Radix extract treatment. Result : The following results were obtained: (1) The $5\;{\mu}g/ml$ of Bupleuri Radix treatment demonstrated a significant decrease in PI fluorescence-stained neuronal dead-cell areas and area percentage in CA1 region of the OHSC from 18 hrs to 48 hrs following the OGD. The $50\;{\mu}g/ml$ of Bupleuri Radix treatment was also significant from 6 hrs to 48 hrs following the OGD and was more effective. (2) The 5 and $50\;{\mu}g/ml$ of Bupleuri Radix treatment demonstrated a significant decrease in PI fluorescence-stained neuronal dead-cell areas and area percentage in DG region of the OHSC from 6 hrs to 48 hrs following the OGD. The $50\;{\mu}g/ml$ treatment was more effective than the $5\;{\mu}g/ml$ treatment. (3) Bupleuri Radix treatment demonstrated a significant decrease in TUNEL-positive apoptotic cells in CA1 region (with 5 and $50\;{\mu}g/ml$) and in DG region (with $50\;{\mu}g/ml$) of the OHSC damaged by the OGD. (4) Bupleuri Radix treatment demonstrated a significant decrease in LDH concentrations in culture media of the OHSC damaged by the OGD. Conclusion : These results suggest that Bupleuri Radix has neuroprotective and control effects on inflammatory and immune responses where there has been ischemic damage to the central nervous system.

  • PDF