Eugenol Inhibits Excitotoxins-Induced Delayed Neurotoxicity, Oxidative Injury and Convulsion

  • Wie, Myung-Bok (Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Cheon, Byung-Hwa (Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Lee, Seon-Young (Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Son, Kun-Ho (Department of food Science and Nutrition, Andong National University) ;
  • Song, Dong-Keun (Department of Pharmacology and Institute of Natural Medicine, IDMRC, College of Medicine, Hallym University) ;
  • Shin, Tae-Kyun (Department of Veterinary Medicine, Cheju National University) ;
  • Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University)
  • Published : 2006.09.30

Abstract

In previous our studies, we have reported that eugenol derived from Eugenia caryophyllata(Myrtaceace) exhibits acute N-methyl-D-aspartate(NMDA)- and oxygen/glucose deprivation-induced neurotoxicity in primary cortical cultures and protects hippocampal neurons from global ischemia. In this study, we investigated whether the extracts and fractions of E. caryophyllata or eugenol shows the neuroprotective effects against delayed neuronal injury evoked by NMDA or ${\alpha}$-amino-3-hydroxy-5-methylisoxazole propionate(AMPA), and oxidative damage induced by arachidonic acid-, hydrogen peroxide-, $FeCl_2$/ascorbic acid-, and buthionine sulfoximine(BSO) in primary cortical cultures. We examined the neurotoxicity of eugenol itself in cultures and inhibitory effect of eugenol on NMDA- or kainate(KA)-induced convulsion in BALB/c mice. Each water, methanol extract and methanol fraction of E. caryophyllata was significantly attenuated NMDA-induced delayed neurotoxicity, respectively. Eugenol exhibited a significant inhibitory action against the convulsion evoked by NMDA and KA, and reduced delayed or brief neurotoxicity induced by NMDA, AMPA, and various oxidative injuries. These results suggest that eugenol derived from E. caryophyllata may contribute the neuroprotection against delayed-type excitotoxicity and excitotoxins-mediated convulsion through the amelioration of oxidative stress.

Keywords

References

  1. Bindokas, V.P., Jordan, J., Lee, C.C. and Miller, R.J. (1996): Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci., 16, 1324-1336 https://doi.org/10.1523/JNEUROSCI.16-04-01324.1996
  2. Bridges, R.J., Koh, J.Y., Hatalski, C.G. and Cotman, C.W. (1991): Increased excitotoxic vulnerability of cortical cultures with reduced levels of glutathione. Eur. J. Pharmacol., 192, 199-200 https://doi.org/10.1016/0014-2999(91)90093-6
  3. Brongholi, K., Souza, D.G., Bainy, A. C., Dafre, A.L. and Tasca, C.I. (2006): Oxygen-glucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices. Brain Res., 1083, 211-218 https://doi.org/10.1016/j.brainres.2006.02.003
  4. Choi, D.W. (1988): Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci., 11, 465-469 https://doi.org/10.1016/0166-2236(88)90200-7
  5. Choi, D.W. (1992): Excitotoxic cell death. J. Neurobiol., 23, 1261-1276 https://doi.org/10.1002/neu.480230915
  6. Dugan, L.L., Gabrielsen, J.K., Yu, S.P., Lin, T.S. and Choi, D.W. (1996): Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis., 3, 129-135 https://doi.org/10.1006/nbdi.1996.0013
  7. Dugan, L.L., Sensi, S.L., Canzoniero, L.M.T., Handran, S.D., Rothman, S.M., Lin, T.-S., Goldberg, M.P. and Choi, D.W. (1995): Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-Daspartate. J. Neurosci., 15, 6377-6388 https://doi.org/10.1523/JNEUROSCI.15-10-06377.1995
  8. Dumuis, A., Sebben, M., Haynes, L., Pin, J.P. and Bockaert, J. (1988): NMDA receptor activates the arachidonic acid cascade system in striatal neurons. Nature, 336, 68-70 https://doi.org/10.1038/336068a0
  9. Haley, T.J. and McCormick, W.G. (1957): Pharmacological effects produced by intracerebral injections of drugs in the conscious mouse. Br. J. Pharmacol., 12, 12-15
  10. Halliwell, B. (1989): Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer's disease, traumatic injury or stroke? Acta. Neurol. Scand. Suppl., 126, 23-33
  11. Ge, Q.F., Wei, E.Q., Zhang, W.P., Hu, X., Huang, X.J., Zhang, L., Song, Y., Ma, Z.Q., Chen, Z. and Luo, J.H. (2006): Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons. J. Neurochem., 97, 992-1004 https://doi.org/10.1111/j.1471-4159.2006.03828.x
  12. Ito, M., Murakami, K. and Yoshino, M. (2005): Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food Chem. Toxicol., 43, 461-466 https://doi.org/10.1016/j.fct.2004.11.019
  13. Kang, J.Y., Kang, H.J., Chung, Y.K., Gwag, B.J. and Noh, J.S. (2001): 5-Hydroxytryptamine attenuates free radical injury in primary mouse cortical cultures. Neuroreport, 12, 963-966 https://doi.org/10.1097/00001756-200104170-00020
  14. Kaneko, S., Kawakami, S., Hara, Y., Wakamori, M., Itoh, E., Minami, T., Takada, Y., Kume, T., Katsuki, H., Mori, Y. and Akaike, A. (2006): A critical role of TRMP2 in neuronal cell death by hydrogen peroxide. J. Pharmacol. Sci., 101, 66-76 https://doi.org/10.1254/jphs.FP0060128
  15. Keelan, J., Allen, N.J., Antcliffe, D., Pal, S. and Duchen, M.R. (2001): Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J. Neurosci. Res., 66, 873-884 https://doi.org/10.1002/jnr.10085
  16. Kim, S.S., Oh, O.J., Min, H.Y., Park, E.J., Kim, Y.L., Park, H.J., Han, Y.N. and Lee, S.K. (2003): Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci., 73, 337-348 https://doi.org/10.1016/S0024-3205(03)00288-1
  17. Kristian, T. and Siesjo, B.K. (1998): Calcium in ischemic cell death. Stroke, 29, 705-718 https://doi.org/10.1161/01.STR.29.3.705
  18. Lafon-Cazal, M., Pietri, S., Culcasi, M. and Bockaert, J. (1993): NMDA-dependnet superoxide production and neurotoxicity. Nature, 364, 535-537 https://doi.org/10.1038/364535a0
  19. Lazarewicz, J.W., Wroblewski, J.T. and Costa, E. (1990): Nmethyl- D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem., 55, 1875-1881 https://doi.org/10.1111/j.1471-4159.1990.tb05771.x
  20. Maralhas, A., Monteiro, A., Martins, C., Kranendonk, M., Laires, A., Rueff, J. and Rodrigues, A.S. (2006): Genotoxicity and endoreduplication inducing activity of the food flavouring eugenol. Mutagenesis, 21, 199-204 https://doi.org/10.1093/mutage/gel017
  21. Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saille, C. and Ceballos-Picot, I. (1998): Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Biochem. Pharmacol., 56, 645-655 https://doi.org/10.1016/S0006-2952(97)00647-3
  22. Ogata, M., Kaneya, D., Shin-ya, K., Li, L., Abe, Y., Katoh, H., Seki, S., Seki, Y., Urano, S. and Endo, T. (2005): Trapping effect of eugenol on hydroxyl radicals induced by LDOPA in vitro. Chem. Pharm. Bull., 53, 1167-1170 https://doi.org/10.1248/cpb.53.1167
  23. Ogata, M., Hoshi, M., Urano, S. and Endo, T. (2000): Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem. Pharm. Bull., 48, 1467-1469 https://doi.org/10.1248/cpb.48.1467
  24. Ohkubo, T. and Shibata, M. (1997): The selective capsaicin antagonist capsazepine abolishes the antinociceptive action of eugenol and guaiacol. J. Dent. Res., 76, 848-851 https://doi.org/10.1177/00220345970760040501
  25. Rose, K., Goldberg, M.P. and Choi, D.W. (1993): Methods in Toxicology: In vitro biological systems (C.A. Tyson and J.M. Frazer, Ed.). Academic Press, San Diego, CA, pp. 46-60
  26. Rothman, S.M., Yamada, K.A. and Lancaster, N. (1993): Nordihydroguaiaretic acid attenuates NMDA neurotoxicity-action beyond the receptor. Neuropharmacol., 32, 1279-1288 https://doi.org/10.1016/0028-3908(93)90022-U
  27. Sanfeliu, C., Hunt, A. and Patel, A.J. (1990): Exposure to Nmethyl- D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocyte. Brain Res., 526, 241-248 https://doi.org/10.1016/0006-8993(90)91228-9
  28. Sharma, J.N., Srivastava, K.C. and Gan, E.K. (1994): Suppressive effects of eugenol and ginger oil on arthritic rats. Pharmacology, 49, 314-318 https://doi.org/10.1159/000139248
  29. Siesjo, B.K., Zhao, Q., Pahlmark, K., Siesjo, P., Katsura, K. and Folbergrova, J. (1995): Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Ann. Thorac. Surg., 59, 1316-1320 https://doi.org/10.1016/0003-4975(95)00077-X
  30. Stella, N., Tence, M., Glowinski, J. and Premont, J. (1994): Glutamate-evoked release of arachidonic acid from mouse brain astrocyte. J. Neurosci., 14, 568-575 https://doi.org/10.1523/JNEUROSCI.14-02-00568.1994
  31. Viu, E., Zapata, A., Capdevila, J.L., Fosson L.H., Skolnick, P. and Trullas, R. (1998): Glycine site antagonists and partial agonists inhibits N-methyl-D-aspartate receptor-mediated [3H]arachidonic acid release in cerebellar granule cells. J. Pharmacol. Exp. Ther., 285, 527-532
  32. Wie, M.B., Cho, Y.J., Jhoo, W.K. and Kim, H.C. (1999): Phenidone attenuates oxygen/glucose deprivation-induced neurotoxicity by antioxidant and antiapoptotic action in mouse cortical cultures. Neurosci. Lett., 272, 91-94 https://doi.org/10.1016/S0304-3940(99)00576-5
  33. Wie, M.B., Won, M.H., Lee, K.H., Shin, J.H., Lee, J.C., Suh, H.W., Song, D.K. and Kim, Y.H. (1997): Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neurosci. Lett., 225, 93-96 https://doi.org/10.1016/S0304-3940(97)00195-X
  34. Whittemore, E.R., Loo, D.T. and Cotman, C.W. (1994): Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport, 5, 1485-1488 https://doi.org/10.1097/00001756-199407000-00019
  35. Won, M.H., Lee, J.C., Kim, Y.H., Song, D.K., Suh, H.W., Oh, Y.S., Kim, J.H., Shin, T.K., Lee, Y.J. and Wie, M.B. (1998): Postischemic hypothermia induced by eugenol protects hippocampal neurons from global ischemia in gerbils. Neurosci. Lett., 254, 101-104 https://doi.org/10.1016/S0304-3940(98)00664-8