• 제목/요약/키워드: Neuronal Cell Differentiation

검색결과 167건 처리시간 0.019초

Ganglioside GT1b Mediates Neuronal Differentiation of Mouse Embryonic Stem Cells

  • Lee, So-Dam;Jin, Jung-Woo;Choi, Jin;Choo, Young-Kug
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권3호
    • /
    • pp.155-161
    • /
    • 2009
  • It has been reported that ganglioside GT1b is expressed during neuronal cell differentiation from undifferentiated mouse embryonic stem cells (mESCs), which suggests that ganglioside GT1b has a direct effect on neuronal cell differentiation. Therefore, this study was conducted to evaluate the effect of exogenous addition of ganglioside GT1b to an in vitro model of neuronal cell differentiation from undifferentiated mESCs. The results revealed that a significant increase in the expression of ganglioside GT1b occurred during neuronal differentiation of undifferentiated mESCs. Next, we evaluated the effect of retinoic acid (RA) on GT1b-treated undifferentiated mESCs, which was found to lead to increased neuronal differentiation. Taken together, the results of this study suggest that ganglioside GT1b plays a crucial role in neuronal differentiation of mESCs.

  • PDF

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.

Role of Cannabinoid on Neuronal Differentiation of P19 Cells

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.267-271
    • /
    • 2011
  • P19 cells are pluripotent embryonal carcinoma cells and can be differentiated into neuronal cell type by treatment with retinoic acid (RA) and aggregation culture. Cannabinoids are the active components of Cannabis sativa and they have diverse pharmacologic activities, such as pain control, anti-inflammatory effects, neuro-protection effects and tumor regression. Cannabinoids also involved in neuronal proliferation, migration, differentiation and survival in developing brain. Here, we studied the role of cannabinoids on neuronal differentiation of P19 cells. Treatment with cannabinoids increased the neuronal differentiation induced by RA and also promoted transcriptional activity of neurogenin 1, key transcription factor for neuronal differentiation of P19 cells. These results suggest that the cannabinoids can accelerate neuronal differentiation of P19 cells.

Involvement of Endoplasmic Reticulum Stress Response in the Neuronal Differentiation

  • Cho, Yoon-Mi;Jang, Yoon-Seong;Jang, Young-Min;Seo, Jin-Young;Kim, Ho-Shik;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권6호
    • /
    • pp.239-246
    • /
    • 2007
  • Expressions of endoplasmic reticulum stress response (ERSR) genes were examined during the neuronal differentiation of rat fetal cortical precursor cells (rCPC) and rat pheochromocytoma PC12 cells. When rCPC were differentiated into neuronal cells for 7 days, early stem cell marker, nest in, expression was decreased from day 4, and neuronal markers such as neurofilament-L, -M and Tuj1 were increased after day 4. In this condition, expressions of BIP, ATF6, and phosphorylated PERK as well as their down stream signaling molecules such as CHOP, ATF4, XBP1, GADD34, Nrf2 and $p58^{IPK}$ were significantly increased, suggesting the induction of ERSR during neuronal differentiation of rCPC. ERSR was also induced during the differentiation of PC12 cells for 9 days with NGF. Neurofilament-L transcript was time-dependently increased. Both mRNA and protein levels of Tuj1 were increased after the induction, and the significant increase in NeuN was observed at day 9. Similar to the expression patterns of neuronal markers, BIP/GRP78 and CHOP mRNAs were highly increased at day 9, and ATF4 mRNA was also increased from day 7. These results strongly suggest the induction and possible role of ERSR in neuronal differentiation process. Further study to identify targets responsible for neuronal induction will be necessary.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

Increase of Cdk5 and p35 during Retinoic Acid-Induced Neuronal Differentiation of SK-N-BE(2)C cells

  • Lee, Jong-Hee;Kim, Kyung-Tai
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.46-46
    • /
    • 2002
  • Cdk5, a neuronal Cdc2-like kinase, exhibits a variety of functions in neuronal differentiation and neurocytoskeleton dynamics as well as neuronal degeneration and cell death. However, its role in retinoic acid (RA)-induced differentiation has not been reported yet. We newly found that RA treatment of SK-N-BE(2)C, human neuroblastoma, increased expression of Cdk5 concomitantly with a neuronal specific activator, p35.(omitted)

  • PDF

Expression profile identifies novel genes involved in neuronal differentiation

  • Kim, Jung-Hee;Lee, Tae-Young;Yoo, Kyung-Hyun;Lee, Hyo-Soo;Cho, Sun-A;Park, Jong-Hoon
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.146-152
    • /
    • 2008
  • In the presence of NGF, PC12 cells extend neuronal processes, cease cell division, become electrically excitable, and undergo several biochemical changes that are detectable in developing sympathetic neurons. We investigated the expression pattern of the apoptosis-related genes at each stage of neuronal differentiation using a cDNA microarray containing 320 apoptosis-related rat genes. By comparing the expression patterns through time-series analysis, we identified candidate genes that appear to regulate neuronal differentiation. Among the candidate genes, HO2 was selected by real-time PCR and Western blot analysis. To identify the roles of selected genes in the stages of neuronal differentiation, transfection of HO2 siRNA in PC12 cells was performed. Down-regulation of HO2 expression causes a reduction in neuronal differentiation in PC12 cells. Our results suggest that the HO2 gene could be related to the regulation of neuronal differentiation levels.

MDMA (Ecstasy) Induces Egr-1 Expression and Inhibits Neuronal Differentiation

  • Lee, Ji-Hae;Kim, Sung-Tae;Choi, Don-Chan;Lee, Seung-Hoon
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권2호
    • /
    • pp.173-178
    • /
    • 2011
  • The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoaminergic neurotoxin with the potential to cause serotonergic neurotoxicity, but has become a popular recreational drug. Little has been known about the cellular effects induced by MDMA. This report shows that MDMA inhibits neuronal cell growth and differentiation. MDMA suppressed neuronal cell growth. The results of quantitative real-time PCR analysis showed that Egr-1 expression is elevated in mouse embryo and neuroblastoma cells after MDMA treatment. Transiently transfected Egr-1 interfered with the neuronal differentiation of neuroblastoma cells such as SH-SY5Y and PC12 cells. These findings provide evidence that the abuse of MDMA during pregnancy may impair neuronal development via an induction of Egr-1 over-expression.

Involvement of Cytochrome c Oxidase Subunit I Gene during Neuronal Differentiation of PC12 Cells

  • Kang, Hyo-Jung;Chung, Jun-Mo;Lee, See-Woo
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 1997
  • It is becoming increasingly evident that significant changes in gene expression occur during the course of neuronal differentiation. Thus, it should be possible to gain information about the biochemical events by identifying differentially expressed genes in neuronal differentiation The PC12 cell line is a useful model system to investigate the molecular mechanism underlying neuronal differentiation and has been used extensively for the study of the molecular events that underlie the biological actions of nerve growth factor (NGF). In this study, we report an application of the recently described mRNA differential display method to analyze differential gene expression during neuronal differentiation. Using this technique, we have identified several cDNA tags expressed differentially during neuronal differentiation. Interestingly, one of these clones was cytochrome c oxidase subunit I (COX I) gene. The differential expression of COX I gene was confirmed by Northern blot analysis as well as RT-PCR. Southern blot analysis of the genomic DNA of PC12 cells revealed that COX I is a single gene. Induction of the oxidative enzyme might reflect the energy requirement in neuronal differentiation.

  • PDF

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells

  • Choi, Won-Young;Hwang, Ji-Hyun;Cho, Ann-Na;Lee, Andrew J.;Jung, Inkyung;Cho, Seung-Woo;Kim, Lark Kyun;Kim, Young-Joon
    • Molecules and Cells
    • /
    • 제43권12호
    • /
    • pp.1011-1022
    • /
    • 2020
  • Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.