• Title/Summary/Keyword: Neuromorphic system

Search Result 14, Processing Time 0.048 seconds

Simple SPICE memristor model for neuromorphic system (뉴로모픽 시스템을 위한 간단한 SPICE 멤리스터 모델)

  • Choi, Gyumin;Park, Byeong-Jun;Rue, Gi-Hong;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.261-266
    • /
    • 2021
  • A simple memristor model is proposed for the neuromorphic system in the Simulation Program for Integrated Circuits Emphasis (SPICE). The memristive I-V characteristics with different voltage and frequencies were analyzed. And with the model, we configured a learning and inference system with 4 by 4 memristor array to show the practical use of the model. We examined the applicability by configuring the simplest neuromorphic circuit. The total simulation time for the proposed model was 18% lesser than that for the one-memristor model. When compared with more memristor models in a circuit, the time became even shorter.

Improved Accuracy in Neuromorphic Computing Based on IGZO Memristor Devices (IGZO 멤리스터 소자기반 뉴로모픽 컴퓨팅 정확도 향상)

  • Seojin Choi;Kyoungjin Min;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.166-171
    • /
    • 2023
  • This paper presents the synaptic characteristics of IGZO memristors in neuromorphic computing, using MATLAB/Simulink and NeuroSim. In order to investigate the variations in the conductivity of IGZO memristor and the corresponding changes in the hidden layer, simulations are conducted by using the MNIST dataset. It was observed from simulation results that the recognition accuracy could be dependent on various parameters of IGZO memristor, along with the experimental exploration. Moreover, we identified optimal parameters to achieve high accuracy, showing an outstanding accuracy of 96.83% in image classification.

  • PDF

A Review of RRAM-based Synaptic Device to Improve Neuromorphic Systems (뉴로모픽 시스템 향상을 위한 RRAM 기반 시냅스 소자 리뷰)

  • Park, Geon Woo;Kim, Jae Gyu;Choi, Geon Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.50-56
    • /
    • 2022
  • In order to process a vast amount of data, there is demand for a new system with higher processing speed and lower energy consumption. To prevent 'memory wall' in von Neumann architecture, RRAM, which is a neuromorphic device, has been researched. In this paper, we summarize the features of RRAM and propose the device structure for characteristic improvement. RRAM operates as a synapse device using a change of resistance. In general, the resistance characteristics of RRAM are nonlinear and random. As synapse device, linearity and uniformity improvement of RRAM is important to improve learning recognition rate because high linearity and uniformity characteristics can achieve high recognition rate. There are many method, such as TEL, barrier layer, NC, high oxidation properties, to improve linearity and uniformity. We proposed a new device structure of TiN/Al doped TaOx/AlOx/Pt that will achieve high recognition rate. Also, with simulation, we prove that the improved properties show a high learning recognition rate.

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향

  • Nam, Jae-Hyeon;Jang, Hye-Yeon;Kim, Tae-Hyeon;Jo, Byeong-Jin
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.4-18
    • /
    • 2018
  • Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.

A Structure of Spiking Neural Networks(SNN) Compiler and a performance analysis of mapping algorithm (Spiking Neural Networks(SNN)를 위한 컴파일러 구조와 매핑 알고리즘 성능 분석)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.613-618
    • /
    • 2022
  • Research on artificial intelligence based on SNN (Spiking Neural Networks) is drawing attention as a next-generation artificial intelligence that can overcome the limitations of artificial intelligence based on DNN (Deep Neural Networks) that is currently popular. In this paper, we describe the structure of the SNN compiler, a system SW that generate code from SNN description for neuromorphic computing systems. We also introduce the algorithms used for compiler implementation and present experimental results on how the execution time varies in neuromorphic computing systems depending on the the mapping algorithm. The mapping algorithm proposed in the text showed a performance improvement of up to 3.96 times over a random mapping. The results of this study will allow SNNs to be applied in various neuromorphic hardware.

Implementation of Neuromorphic System with Si-based Floating-body Synaptic Transistors

  • Park, Jungjin;Kim, Hyungjin;Kwon, Min-Woo;Hwang, Sungmin;Baek, Myung-Hyun;Lee, Jeong-Jun;Jang, Taejin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.210-215
    • /
    • 2017
  • We have developed the neuromorphic system that can work with the four-terminal Si-based synaptic devices and verified the operation of the system using simulation tool and printed-circuit-board (PCB). The symmetrical current mirrors connected to the n-channel and p-channel synaptic devices constitute the synaptic integration part to express the excitation and the inhibition mechanism of neurons, respectively. The number and the weight of the synaptic devices affect the amount of the current reproduced from the current mirror. The double-stage inverters controlling delay time and the NMOS with large threshold voltage ($V_T$) constitute the action-potential generation part. The generated action-potential is transmitted to next neuron and simultaneously returned to the back gate of the synaptic device for changing its weight based on spike-timing-dependent-plasticity (STDP).

The design of capacitor-based self-powered artificial neural networks devices (커패시터 기반 자가발전 인공 신경망 디바이스 설계)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • This paper proposes the battery-less ultra-low-power self-powered cooperating artificial neural networks device for embedded and IoT systems. This device can work without extraneous power supplying and can cooperate with other neuromorphic devices to build large-scale neural networks. This device has energy harvesting modules, so that can build a self-powered system and be used everywhere without space constraints for power supplying.

ETRI AI Strategy #2: Strengthening Competencies in AI Semiconductor & Computing Technologies (ETRI AI 실행전략 2: AI 반도체 및 컴퓨팅시스템 기술경쟁력 강화)

  • Choi, S.S.;Yeon, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.7
    • /
    • pp.13-22
    • /
    • 2020
  • There is no denying that computing power has been a crucial driving force behind the development of artificial intelligence today. In addition, artificial intelligence (AI) semiconductors and computing systems are perceived to have promising industrial value in the market along with rapid technological advances. Therefore, success in this field is also meaningful to the nation's growth and competitiveness. In this context, ETRI's AI strategy proposes implementation directions and tasks with the aim of strengthening the technological competitiveness of AI semiconductors and computing systems. The paper contains a brief background of ETRI's AI Strategy #2, research and development trends, and key tasks in four major areas: 1) AI processors, 2) AI computing systems, 3) neuromorphic computing, and 4) quantum computing.

Design of Lightweight Artificial Intelligence System for Multimodal Signal Processing (멀티모달 신호처리를 위한 경량 인공지능 시스템 설계)

  • Kim, Byung-Soo;Lee, Jea-Hack;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1037-1042
    • /
    • 2018
  • The neuromorphic technology has been researched for decades, which learns and processes the information by imitating the human brain. The hardware implementations of neuromorphic systems are configured with highly parallel processing structures and a number of simple computational units. It can achieve high processing speed, low power consumption, and low hardware complexity. Recently, the interests of the neuromorphic technology for low power and small embedded systems have been increasing rapidly. To implement low-complexity hardware, it is necessary to reduce input data dimension without accuracy loss. This paper proposed a low-complexity artificial intelligent engine which consists of parallel neuron engines and a feature extractor. A artificial intelligent engine has a number of neuron engines and its controller to process multimodal sensor data. We verified the performance of the proposed neuron engine including the designed artificial intelligent engines, the feature extractor, and a Micro Controller Unit(MCU).

Memristors based on Al2O3/HfOx for Switching Layer Using Single-Walled Carbon Nanotubes (단일 벽 탄소 나노 튜브를 이용한 스위칭 레이어 Al2O3/HfOx 기반의 멤리스터)

  • DongJun, Jang;Min-Woo, Kwon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.633-638
    • /
    • 2022
  • Rencently, neuromorphic systems of spiking neural networks (SNNs) that imitate the human brain have attracted attention. Neuromorphic technology has the advantage of high speed and low power consumption in cognitive applications and processing. Resistive random-access memory (RRAM) for SNNs are the most efficient structure for parallel calculation and perform the gradual switching operation of spike-timing-dependent plasticity (STDP). RRAM as synaptic device operation has low-power processing and expresses various memory states. However, the integration of RRAM device causes high switching voltage and current, resulting in high power consumption. To reduce the operation voltage of the RRAM, it is important to develop new materials of the switching layer and metal electrode. This study suggested a optimized new structure that is the Metal/Al2O3/HfOx/SWCNTs/N+silicon (MOCS) with single-walled carbon nanotubes (SWCNTs), which have excellent electrical and mechanical properties in order to lower the switching voltage. Therefore, we show an improvement in the gradual switching behavior and low-power I/V curve of SWCNTs-based memristors.