DOI QR코드

DOI QR Code

Simple SPICE memristor model for neuromorphic system

뉴로모픽 시스템을 위한 간단한 SPICE 멤리스터 모델

  • Choi, Gyumin (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Park, Byeong-Jun (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Rue, Gi-Hong (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Hahm, Sung-Ho (School of Electronic and Electrical Engineering, Kyungpook National University)
  • 최규민 (경북대학교 전자전기공학부) ;
  • 박병준 (경북대학교 전자전기공학부) ;
  • 류기홍 (경북대학교 전자전기공학부) ;
  • 함성호 (경북대학교 전자전기공학부)
  • Received : 2021.07.13
  • Accepted : 2021.07.29
  • Published : 2021.07.31

Abstract

A simple memristor model is proposed for the neuromorphic system in the Simulation Program for Integrated Circuits Emphasis (SPICE). The memristive I-V characteristics with different voltage and frequencies were analyzed. And with the model, we configured a learning and inference system with 4 by 4 memristor array to show the practical use of the model. We examined the applicability by configuring the simplest neuromorphic circuit. The total simulation time for the proposed model was 18% lesser than that for the one-memristor model. When compared with more memristor models in a circuit, the time became even shorter.

Keywords

Acknowledgement

본 연구는 대한민국 교육부의 재원으로 BK21 4단계 사업(4199990113966)과 정부의 재원으로 한국연구재단의 지원(No. 2020R1I1A3A04037962), 그리고산업통상자원부 '산업전문인력 역량강화사업'의 재원으로 한국산업기술진흥원(KIAT)의 지원(2021년 첨단센서 전문인력 양성사업, 과제번호 : P0001018)을 받아 수행된 연구임.

References

  1. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors", Nature, Vol. 521, pp. 61-64, 2015. https://doi.org/10.1038/nature14441
  2. G. Kim, K. Kim, S. Choi, H. J. Jang, and S. O. Jung, "Area- and energy-efficient STDP learning algorithm for spiking neural network SoC", IEEE Access, Vol. 8, pp. 216922-216932, 2020. https://doi.org/10.1109/ACCESS.2020.3041946
  3. G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishnamurthy, "A 4096-Neuron 1M-Synapse 3.8-pJ/SOP spiking neural network with on-chip STDP learning and sparse weights in 10-nm FinFET CMOS", IEEE J. Solid-State Circuits., Vol. 54, No. 4, pp. 992-1002, 2019. https://doi.org/10.1109/jssc.2018.2884901
  4. Y. S. Yang and Y. Kim, "Recent trend of neuromorphic computing hardware: Intel's neuromorphic system perspective", 2020 Int. SoC Des. Conf. (ISOCC), pp. 218-219, Yeosu, South Korea, 2020.
  5. M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, and B. G. Lee, "Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron", IEEE Trans. Ind. Electron., Vol. 62, No. 4, pp. 2410-2419, 2015. https://doi.org/10.1109/TIE.2014.2356439
  6. J. Misra, I. Saha, "Artificial neural networks in hardware: A survey of two decades of progress", Neurocomputing, Vol. 74, No. 1-3, pp. 239-255, 2010. https://doi.org/10.1016/j.neucom.2010.03.021
  7. M. Kimura, R. Sumida, A. Kurasaki, T. Imai, Y. Takishita, and Y. Nakashima, "Amorphous metal oxide semiconductor thin film, analog memristor, and autonomous local learning for neuromorphic systems", Sci. Rep., Vol. 11, No.1, pp. 1-7, 2021. https://doi.org/10.1038/s41598-020-79139-8
  8. J. J. Lee, J. Park, M. W. Kwon, S. Hwang, H. Kim, and B. G. Park, "Integrated neuron circuit for implementing neuromorphic system with synaptic device", Solid State Electron., Vol. 140, pp. 34-40, 2018. https://doi.org/10.1016/j.sse.2017.10.012
  9. S. H. Lee, H. L. Park, M. H. Kim, M. H. Kim, B. G. Park, and S. D. Lee, "Realization of Biomimetic Synaptic Functions in a One-Cell Organic Resistive Switching Device Using the Diffusive Parameter of Conductive Filaments", ACS Appl. Mater. Interfaces., Vol. 12, No. 46, pp. 51719-51728, 2020 https://doi.org/10.1021/acsami.0c15519
  10. H. Kim, S. Cho, M. C. Sun, J. Park, S. Hwang, and B. G. Park, "Simulation Study on Silicon-Based Floating Body Synaptic Transistor with Short- and Long-Term Memory Functions and Its Spike Timing-Dependent Plasticity", J. Semicond. Technol. Sci., Vol. 16, No. 5, pp. 657-663, 2016. https://doi.org/10.5573/JSTS.2016.16.5.657
  11. S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P. Y. Chen, H. Chen, S. Yu, and J. Kim, "SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations", Nat. Mater., Vol. 17, No. 4, pp. 335-340, 2018. https://doi.org/10.1038/s41563-017-0001-5
  12. Y. Sun, C. Song, J. Yin, X. Chen, Q. Wan, F. Zeng, and F. Pan, "Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching", ACS Appl. Mater. Interfaces, Vol. 9, No. 39, pp. 34064-34070. 2017. https://doi.org/10.1021/acsami.7b09710
  13. F. Gul, "Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array", Results Phys., Vol. 12, pp. 1091-1096, 2019. https://doi.org/10.1016/j.rinp.2018.12.092
  14. L. Shi, G. Zheng, B. Tian, B. Dkhil, and C. Duan, "Research progress on solutions to the sneak path issue in memristor crossbar arrays", Nanoscale Adv., Vol. 2, No. 5, pp. 1811-1827, 2020. https://doi.org/10.1039/d0na00100g
  15. Z. Biolek, D. Biolek, and V. Biolkova, "SPICE model of memristor with nonlinear dopant drift", Radioengeering, Vol. 18, No. 2, 2009.
  16. D. Batas and H. Fiedler, "A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling", IEEE Trans. Nanotechno., Vol. 10, No. 2, pp. 250-255, 2011. https://doi.org/10.1109/TNANO.2009.2038051
  17. M. J. Sharifi and Y. M. Banadaki, "General spice models for memristor and application to circuit simulation of memristor-based synapses and memory cells", J. Circuits Syst. Comput., Vol. 19, No. 2, pp. 407-424, 2010. https://doi.org/10.1142/S0218126610006141
  18. A. Rak, and G. Cserey, "Macromodeling of the memristor in SPICE", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 29, No. 4, pp.632-636, 2010. https://doi.org/10.1109/TCAD.2010.2042900
  19. H. Abdalla and M. D. Pickett, "SPICE modeling of memristors", 2011 IEEE Int. Symp. Circuits and Syst. (ISCAS), pp. 1832-1835, Rio de Janeiro, Brazil, 2011.
  20. A. F. Adzmi, A. Nasrudin, W. F. H. Abdullah, and S. H. Herman, "Memristor Spice model for designing analog circuit", 2012 IEEE Stud. Conf. Res. Dev. (SCOReD), pp. 78-83, Pulau Pinang, Malaysia, 2012.
  21. C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, "Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time", The 2013 Int. Jt. Conf. Neural Netw. (IJCNN), pp. 1-7, Dallas, USA, 2013.
  22. D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, "The missing memristor found", Nature, Vol. 453, No. 7191, pp. 80-83, 2008. https://doi.org/10.1038/nature06932