Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites
A new CMOS neuron circuit for implementing bistable synapses with spike-timing-dependent plasticity (STDP) properties has been proposed. In neuromorphic systems using STDP properties, the short-term dynamics of the synaptic efficacies are governed by the relative timing of the pre- and post-synaptic spikes, and the efficacies tend asymptotically to either a potentiated state or to a depressed one on long time scales. The proposed circuit consists of a negative shifter, a current starved inverter and a schmitt trigger designed using 0.18um CMOS technology. The simulation result shows that the proposed circuit can reduce the total size of neurons, and the spike energy of the proposed circuit is much less compared to the conventional circuits.
SNN(Spiking Neural Networks) 기반의 인공지능 연구는 현재 유행하는 DNN(Deep Neural Networks) 기반의 인공지능의 한계를 극복할 수 있는 차세대 인공지능으로서 주목받고 있다. 본 논문에서는 SNN 형태의 입력을 뉴로모픽 컴퓨팅 시스템에서 구동시킬 수 있는 시스템 SW인 SNN 컴파일러의 구조에 대하여 설명한다. 또한 컴파일러 구현을 위하여 사용된 알고리즘을 소개하고 매핑 알고리즘의 동작 형태에 따라 뉴로모픽 컴퓨팅 시스템에서 수행시간이 어떻게 달라지는지에 대한 실험결과를 제시한다. 본문에서 제안한 매핑 알고리즘은 랜덤 매핑에 비해 최대 3.96배의 수행속도 향상이 있었다. 해당 연구 결과를 통해 SNN들을 다양한 뉴로모픽 하드웨어에서 적용할 수 있을 것이다.
There is no denying that computing power has been a crucial driving force behind the development of artificial intelligence today. In addition, artificial intelligence (AI) semiconductors and computing systems are perceived to have promising industrial value in the market along with rapid technological advances. Therefore, success in this field is also meaningful to the nation's growth and competitiveness. In this context, ETRI's AI strategy proposes implementation directions and tasks with the aim of strengthening the technological competitiveness of AI semiconductors and computing systems. The paper contains a brief background of ETRI's AI Strategy #2, research and development trends, and key tasks in four major areas: 1) AI processors, 2) AI computing systems, 3) neuromorphic computing, and 4) quantum computing.
In order to process a vast amount of data, there is demand for a new system with higher processing speed and lower energy consumption. To prevent 'memory wall' in von Neumann architecture, RRAM, which is a neuromorphic device, has been researched. In this paper, we summarize the features of RRAM and propose the device structure for characteristic improvement. RRAM operates as a synapse device using a change of resistance. In general, the resistance characteristics of RRAM are nonlinear and random. As synapse device, linearity and uniformity improvement of RRAM is important to improve learning recognition rate because high linearity and uniformity characteristics can achieve high recognition rate. There are many method, such as TEL, barrier layer, NC, high oxidation properties, to improve linearity and uniformity. We proposed a new device structure of TiN/Al doped TaOx/AlOx/Pt that will achieve high recognition rate. Also, with simulation, we prove that the improved properties show a high learning recognition rate.
본 논문에서는 뉴로모픽 칩에서 운영되는 RBF 네트워크를 다양한 형태로 제공하는 시뮬레이터를 제안한다. 뉴로모픽 칩의 RBF 네트워크를 학습할 때 시뮬레이터를 사용할 경우에는 시간은 단축되지만 다양한 형태의 알고리즘을 테스트하기 어렵다는 단점이 있다. 본 제안 시뮬레이터는 기존 시뮬레이터와 비교하여 4배 많은 종류의 네트워크 구조 모의실험이 가능하며 특히, 이중 레이어 구조를 추가로 제공한다. 이중 레이어 구조는 다중 데이터 입력 시 활용되도록 구성하였으며 성능 분석 결과, 본 이중 레이어 구조가 기존보다 더 높은 정확도를 보였다.
최근 인간의 뇌를 모방하여 정보를 학습하고 처리하는 뉴로모픽 기술에 대한 연구는 꾸준히 진행되고 있다. 뉴로모픽 시스템의 하드웨어 구현은 다수의 간단한 연산절차와 고도의 병렬처리 구조로 구성이 가능하여, 처리속도, 전력소비, 저 복잡도 구현 측면에서 상당한 이점을 가진다. 또한 저 전력, 소형 임베디드 시스템에 적용 가능한 뉴로모픽 기술에 대한 연구가 급증하고 있으며, 정확도 손실 없이 저 복잡도 구현을 위해서는 입력데이터의 차원축소 기술이 필수적이다. 본 논문은 멀티모달 센서 데이터를 처리하기 위해 멀티모달 센서 시스템, 다수의 뉴론 엔진, 뉴론 엔진 컨트롤러 등으로 구성된 경량 인공지능 엔진과 특징추출기를 설계 하였으며, 이를 위한 병렬 뉴론 엔진 구조를 제안하였다. 설계한 인공지능 엔진, 특징 추출기, Micro Controller Unit(MCU)를 연동하여 제안한 경량 인공지능 엔진의 성능 검증을 진행하였다.
본 논문은 초소형 디바이스 분야에서 사용될 수 있는 배터리가 없는 초저전력 자가발전 협업 신경망 시스템을 제공하는 디바이스에 대하여 설명한다. 본 디바이스는 외부에서 전력을 공급하지 않더라도 동작하며, 다른 신경망과 협업하여 대규모의 신경망 구축이 가능하다. 해당 디바이스는 에너지 하베스팅 모듈을 탑재하고 있어 공간적 제약 없이 어느 곳에서나 자가발전을 이용하여 사용이 가능하며, 디바이스 내부의 신경만을 가지고도 동작할 수 있지만 상황에 따라 네트워크를 통해 대규모의 신경망의 일부로 사용하는 것도 가능하다.
Neuromorphic systems require integrated structures with high-density memory and selector devices to avoid interference and recognition errors between neighboring memory cells. To improve the performance of a selector device, it is important to understand the characteristics of the switching process. As changes by switching cycle occur at local nanoscale areas, a high-resolution analysis method is needed to investigate this phenomenon. Atomic force microscopy (AFM) is used to analyze the local changes because it offers nanoscale detection with high-resolution capabilities. This review introduces various types of AFM such as conductive AFM (C-AFM), electrostatic force microscopy (EFM), and Kelvin probe force microscopy (KPFM) to study switching behaviors.
최근 인간의 뇌를 모방한 스파이킹 뉴럴 네트워크(SNNs)의 뉴로모픽(Neuromorphic) 시스템이 주목을 받고 있다. 뉴로모픽 기술은 인지 응용과 처리 과정에서 속도가 빠르고 전력 소모가 적다는 장점이 있다. SNNs 기반의 저항성 랜덤 엑세스 메모리(RRAM) 은 병렬 연산을 위한 가장 효율적인 구조이며 스파이크 타이밍 종속 가소성(STDP)의 점진적인 스위칭 동작을 수행한다. 시냅스 소자 동작으로서의 RRAM은 저 전력 프로세싱과 다양한 메모리 상태를 표현한다. 하지만, RRAM 소자의 통합은 높은 스위칭 전압 및 전류를 유발하여 높은 전력 소비를 초래한다. RRAM의 동작 전압을 낮추기 위해서는 스위칭 레이어와 금속 전극의 신소재를 개발하는 것이 중요하다. 본 연구에서는 스위칭 전압을 낮추기 위해 전기적, 기계적 특성이 우수한 단일 벽 탄소나노튜브(SWCNTs)를 갖는 (Metal/Al2O3/HfOx/SWCNTs/N+silicon, MOCS)라는 최적화된 새로운 구조를 제안하였다. 따라서 SWCNTs 기반 멤리스터의 점진적인 스위칭 동작 및 저 전력 I/V 곡선의 향상을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.