• 제목/요약/키워드: Neuro control

검색결과 450건 처리시간 0.029초

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계 (A design of neuro-fuzzy adaptive controller using a reference model following function)

  • 이영석;유동완;서보혁
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

로봇 매니퓰레이터의 불확실성 보상을 위한 퍼지­-뉴로 제어 (A Fuzzy-Neural Control for Uncertainty Compensation of Robot Manipulator)

  • 박세준;양승혁;황문구;양태규
    • 한국정보통신학회논문지
    • /
    • 제7권8호
    • /
    • pp.1759-1766
    • /
    • 2003
  • 본 논문에서는 로봇 매니퓰레이터의 궤적 추종 제어에 관한 연구를 위하여 뉴로­퍼지 제어기를 제안하였다. 궤적 추종 제어기를 설계할 경우, 주로 이용되는 효과적인 방법은 토크 계산 제어 방식이다. 그러나, 로봇 매니퓰레이터에 의한 불확실성 문제로 인하여 토크 계산 제어 방식만으로는 좋은 제적 추종 성능을 얻을 수가 없다. 그러므로, 본 논문에서는 로봇 매니퓰레이터에서 발생한 불확실성을 보상하기 위하여 제안된 뉴로­퍼지 제어기를 이용하였다. 뉴로­퍼지 제어기에서의 퍼지 규칙의 수를 49개로 설정하였으며, 2관절 로봇 매니퓰레이터를 이용한 컴퓨터 시뮬레이션을 통해 제어기의 효율성을 입증하였다. 그 결과. 제안된 뉴로­퍼지 제어기의 출력이 로봇 매니퓰레이터에서 발생한 불확실성을 효과적으로 감소시킬 수 있음을 확인할 수 있었다.

하이브리드 면진장치의 뉴로-퍼지 모형화 (Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System)

  • 김현수;;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF

적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화 (Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

Fuzzy-Neuro PI 제어기를 이용한 IPMSM 드라이브의 고성능 속도제어 (High Performance Speed Control of IPMSM Drive using Fuzzy-Neuro PI Controller)

  • 고재섭;최정식;박기태;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1009-1010
    • /
    • 2007
  • This paper presents Fuzzy-Neuro PI controller of IPMSM drive using fuzzy and neural-network. In general, PI controller in computer numerically controlled machine process fixed gain. To increase the robustness, fixed gain PI controller, Fuzzy-Neuro PI controller proposes a new method based fuzzy and neural-network. Fuzzy-Neuro PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner.

  • PDF

유압서보 시스템을 위한 뉴로-퍼지 제어기 설계 (Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems)

  • 김천호;조형석
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.101-111
    • /
    • 1993
  • 본 연구에서는 제안된 뉴로-퍼지 제어기를 사용하여 유압 서보 시스템을 제어 하고 학습하기 위한 구조로써 유압 서보 시스템의 모델링을 위한 추가적인 노력이 필 요없는 feedback error learning 구조물 채택하였다. 학습 과정에서 필요한 유압 서 보 시스템의 입-출력 사이의 감도(sensitivity)의 효과는 학습 계수에 포함된다. 이 러한 형태의 제어기가 유압 서보 시스템 제어에 유용하게 적용될 수 있다는 것을 보이 기 위해서 불확실성과 높은 비선형성 뿐만아니라 외란의 영향을 받는 유압 서보 시스 템을 대상으로 시뮬레이션을 수행했다. 시뮬레이션 결과에 의하면 제안된 뉴로-퍼지 제어기는 수학적인 모델을 기초로한 기존의 제어 알고리즘에 비해 쉽게 구성할 수 있 고 높은 정밀도, 빠른 학습 속도를 얻을 수 있는 장점을 가지고 있음을 알 수 있다.

뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어 (Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control)

  • 최진영;박현주
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.9-15
    • /
    • 1998
  • 본 논문은 뉴로제어 및 반복학습 제어기법에 기반한 미지의 비선형시스템의 적응학습제어 방법을 제안한다. 제안된 제어 시스템에서 반복학습제어기는 새로운 기준 궤적에 대해 시스템의 출력이 원하는 궤적으로 정확히 수렴하도록 하는 적응과 단기간 제어정보를 기억하는 기능을 수행한다. 상대차수만 알고 있는 미지 시스템에 대한 박복학습 법칙이 학습이득은 신경회로망을 이용하여 추정된다. 반복학습제어기에 의해 습득된 제어정보는 장기메모리에 기반한 앞먹임 뉴로제어기로 이전되어 누적기억됨으로써 과거에 겸험된 기준 궤적에 대해서는 신속하게 추종할 수 있도록 한다. 2자유도 매니퓰레이터에 적용하여 제안된 기법의 타당성을 검증한다.

  • PDF

적응 퍼지-뉴로 제어기를 이용한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive using Adaptive Fuzzy-Neuro Controller)

  • 김도연;고재섭;최정식;정병진;박기태;최정훈;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.126-128
    • /
    • 2007
  • This paper proposes maximum torque control of IPMSM drive using Adaptive Fuzzy-Neuro controller and artificial neural network(ANN). The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. This paper proposes the analysis results to verify the effectiveness of the Adaptive Fuzzy-Neuro and ANN controller.

  • PDF

뉴로퍼지기법에 의한 SRM의 맥동토오크 최소화 (A Neuro-Fuzzy Based Torque Ripple Minimization of Switched Reluctance Motors)

  • 박한웅;원태현;박성준;추영배;김철우;황영문
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.197-199
    • /
    • 1998
  • A neuro-fuzzy based torque profile model of SRM with considerably improved accuracy is obtained using the measured data for training. The inferred torque profiles, which comprise magnetic non-linearities, represent the dynamic model of SRM. Then the reference torque signal with optimized waveform and switching angle are decided to control the torque directly. Hence, the presented scheme controls the torque in an instantaneous basis, allowing powerful torque control with minimum torque ripple even during the transient operation of the motor. Simulation and experimental results demonstrating the effectiveness of the proposed torque control scheme are presented.

  • PDF