Abstract
This paper proposes a neurofuzzy controllers for trajectory tracking control of robot manipulators. The computed torque method is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. Therefore, the proposed controller is used to compensate the uncertainties of robot manipulators. In the neurofuzzy controllers, the number of fuzzy rules used fortynine. The effectiveness of the proposed controllers is demonstrated by computer simulations using twolink robot manipulator, As a result, it is confirmed that the output of the proposed neurofuzzy controllers can efficiently decrease the uncertainties of robot manipulator.
본 논문에서는 로봇 매니퓰레이터의 궤적 추종 제어에 관한 연구를 위하여 뉴로퍼지 제어기를 제안하였다. 궤적 추종 제어기를 설계할 경우, 주로 이용되는 효과적인 방법은 토크 계산 제어 방식이다. 그러나, 로봇 매니퓰레이터에 의한 불확실성 문제로 인하여 토크 계산 제어 방식만으로는 좋은 제적 추종 성능을 얻을 수가 없다. 그러므로, 본 논문에서는 로봇 매니퓰레이터에서 발생한 불확실성을 보상하기 위하여 제안된 뉴로퍼지 제어기를 이용하였다. 뉴로퍼지 제어기에서의 퍼지 규칙의 수를 49개로 설정하였으며, 2관절 로봇 매니퓰레이터를 이용한 컴퓨터 시뮬레이션을 통해 제어기의 효율성을 입증하였다. 그 결과. 제안된 뉴로퍼지 제어기의 출력이 로봇 매니퓰레이터에서 발생한 불확실성을 효과적으로 감소시킬 수 있음을 확인할 수 있었다.