• Title/Summary/Keyword: Neural-Networks

Search Result 4,835, Processing Time 0.026 seconds

The Single Step Prediction of Multi-Input Multi-Output System using Chaotic Neural Networks (카오틱 신경망을 이용한 다입력 다출력 시스템의 단일 예측)

  • 장창화;김상희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1041-1044
    • /
    • 1999
  • In This paper, we investigated the single step prediction for output responses of chaotic system with multi Input multi output using chaotic neural networks. Since the systems with chaotic characteristics are coupled between internal parameters, the chaotic neural networks is very suitable for output response prediction of chaotic system. To evaluate the performance of the proposed neural network predictor, we adopt for Lorenz attractor with chaotic responses and compare the results with recurrent neural networks. The results demonstrated superior performance on convergence and computation time than the predictor using recurrent neural networks. And we could also see good predictive capability of chaotic neural network predictor.

  • PDF

Comparative Study on the Neural Networks versus Numerical Analysis Algorithm (신경망과 수치 해석 알고리즘의 비교 연구)

  • 이승창;박승권
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.265-272
    • /
    • 1997
  • The purpose of this paper is to develop Neural Network models for Approximate Structural Analysis (NNASA). As an initial stage, the paper classifies the characteristics and the active role of neural networks in the numerical analysis by comparing neural networks with conventional numerical analysis algorithms. The paper proposed two methods of finding solutions of linear algebraic equations by a modified neural network algorithm, and presents that multilayer feedforward networks are a class of universal approximators by comparing the neural network with regression and interpolation techniques.

  • PDF

S & P 500 Stock Index' Futures Trading with Neural Networks (신경망을 이용한 S&P 500 주가지수 선물거래)

  • Park, Jae-Hwa
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.43-54
    • /
    • 1996
  • Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.

  • PDF

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network (인공신경망 기반의 기타 코드 분류 시스템 성능 비교)

  • Park, Sun Bae;Yoo, Do-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

(The Speed Control of Induction Motor using PD Controller and Neural Networks) (PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • This paper presents the implementation of the speed control system for 3 phase induction motor using PD controller and neural networks. The PD controller is used to control the motor and to train neural networks at the first time. And neural networks are widely used as controllers because of a nonlinear mapping capability, we used feedforward neural networks(FNN) in order to simply design the speed control system of the 3 phase induction motor. Neural networks are tuned online using the speed reference, actual speed measured from an encoder and control input current to motor. PD controller and neural networks are applied to the speed control system for 3 phase induction motor, are compared with PI controller through computer simulation and experiment respectively. The results are illustrated that the output of the PD controller is decreased and feedforward neural networks act main controller, and the proposed hybrid controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • Roh Seok-Beom;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

Health Monitoring Method for Monopile Support Structure of Offshore Wind Turbine Using Committee of Neural Networks (군집 신경망기법을 이용한 해상풍력발전기 지지구조물의 건전성 모니터링 기법)

  • Lee, Jong Won;Kim, Sang Ryul;Kim, Bong Ki;Lee, Jun Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.347-355
    • /
    • 2013
  • A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.

A Study on Training Ensembles of Neural Networks - A Case of Stock Price Prediction (신경망 학습앙상블에 관한 연구 - 주가예측을 중심으로 -)

  • 이영찬;곽수환
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, a comparison between different methods to combine predictions from neural networks will be given. These methods are bagging, bumping, and balancing. Those are based on the analysis of the ensemble generalization error into an ambiguity term and a term incorporating generalization performances of individual networks. Neural Networks and AI machine learning models are prone to overfitting. A strategy to prevent a neural network from overfitting, is to stop training in early stage of the learning process. The complete data set is spilt up into a training set and a validation set. Training is stopped when the error on the validation set starts increasing. The stability of the networks is highly dependent on the division in training and validation set, and also on the random initial weights and the chosen minimization procedure. This causes early stopped networks to be rather unstable: a small change in the data or different initial conditions can produce large changes in the prediction. Therefore, it is advisable to apply the same procedure several times starting from different initial weights. This technique is often referred to as training ensembles of neural networks. In this paper, we presented a comparison of three statistical methods to prevent overfitting of neural network.

  • PDF

Trip Generation Model Using Backpropagation Neural Networks in Comparison with linear/nonlinear Regression Analysis (신경망 이론을 이용한 통행발생 모형연구 (선형/비선형 회귀모형과의 비교))

  • 장수은;김대현;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.95-105
    • /
    • 2000
  • The Purpose of this study is to present a new Trip Generation Model using Backpropagation Neural Networks. For this purpose, it is compared the performance between existing linear/nonlinear Regression models and a new TriP Generation model using Neural Networks. The study was performed according to the below. First, it is analyzed the limits of conventional Regression models, next Proved the superiority of Neural Networks model in theoretical and empirical aspects, and lastly Presented a new approach of Trip Generation methodology. The results show that Backpropagation Neural Networks model is predominant in estimation and Prediction comparable to Regression analysis. Such results mean the possibility of Neural Networks\` application in Trip Generation modeling. Specially under the circumstances of the chancing transportation situations and unstable transportation on vironments, its application in transportation fields will be extended.

  • PDF