• Title/Summary/Keyword: Neural networks model

Search Result 1,884, Processing Time 0.023 seconds

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Long-Term Memory and Correct Answer Rate of Foreign Exchange Data (환율데이타의 장기기억성과 정답율)

  • Weon, Sek-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3866-3873
    • /
    • 2000
  • In this paper, we investigates the long-term memory and the Correct answer rate of the foreign exchange data (Yen/Dollar) that is one of economic time series, There are many cases where two kinds of fractal dimensions exist in time series generated from dynamical systems such as AR models that are typical models having a short terrr memory, The sample interval separating from these two dimensions are denoted by kcrossover. Let the fractal dimension be $D_1$ in K < $k^{crossover}$,and $D_2$ in K > $k^{crossover}$ from the statistics mode. In usual, Statistic models have dimensions D1 and D2 such that $D_1$ < $D_2$ and $D_2\cong2$ But it showed a result contrary to this in the real time series such as NIKKEL The exchange data that is one of real time series have relation of $D_1$ > $D_2$ When the interval between data increases, the correlation between data increases, which is quite a peculiar phenomenon, We predict exchange data by neural networks, We confirm that $\beta$ obrained from prediction errors and D calculated from time series data precisely satisfy the relationship $\beta$ = 2-2D which is provided from a non-linear model having fractal dimension, And We identified that the difference of fractal dimension appeaed in the Correct answer rate.

  • PDF

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.

Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot (CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발)

  • Yi, Sarang;Noh, Eunsol;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2020
  • Air ducts installed for ventilation inside buildings accumulate contaminants during their service life. Robots are installed to clean the air duct at low cost, but they are still not fully automated and depend on manpower. In this study, an intersection detection algorithm for autonomous driving was applied to an air duct cleaning robot. Autonomous driving of the robot was achieved by calculating the distance and angle between the extracted point and the center point through the intersection detection algorithm from the camera image mounted on the robot. The training data consisted of CAD images of the duct interior as well as the cross-point coordinates and angles between the two boundary lines. The deep learning-based CNN model was applied as a detection algorithm. For training, the cross-point coordinates were obtained from CAD images. The accuracy was determined based on the differences in the actual and predicted areas and distances. A cleaning robot prototype was designed, consisting of a frame, a Raspberry Pi computer, a control unit and a drive unit. The algorithm was validated by video imagery of the robot in operation. The algorithm can be applied to vehicles operating in similar environments.

A Study on the Analysis of Apartment Price affected by Urban Infrastructure System - Electricity Substation (도시기반시설이 공동주택가격에 미치는 영향분석에 관한 연구 - 전력통신시설(변전소)을 중심으로 -)

  • Hwang, Sungduk;Jeong, Moonoh;Lee, Sangyoub
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.74-81
    • /
    • 2015
  • As one of urban infrastructure system, the electricity substation is critical for urban life and industrial activity as the electricity demands get higher than ever. However the substation is generally regarded as unpleasant or dangerous facility, which finally results in the continuous opposition movement by resident due to the belief of unidentified negative effect in apartment prices. Accordingly, as the scientifically objective and quantitative analysis is required to solve the social conflict, this study intends to examine the variation affected by urban infrastructure system, expecially for substation. After the independent variable defining the price of apartment and the dependent variable, which is apartment price, are identified and their spatial data has been filed, the forecasting model has been developed through the hedonic price function as well as artificial neural networks system. The research finding indicated that the spatial range affected by substation is not notable and the range of some case was applicable for less than 600m. It is expected that these research findings can be applied for establishing the one of solid cases for the analysis of economical effect to local housing market by the urban infrastructure system.

Predicting Performance of Heavy Industry Firms in Korea with U.S. Trade Policy Data (미국 무역정책 변화가 국내 중공업 기업의 경영성과에 미치는 영향)

  • Park, Jinsoo;Kim, Kyoungho;Kim, Buomsoo;Suh, Jihae
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.4
    • /
    • pp.71-101
    • /
    • 2017
  • Since late 2016, protectionism has been a major trend in world trade with the Great Britain exiting the European Union and the United States electing Donald Trump as the 45th president. Consequently, there has been a huge public outcry regarding the negative prospects of heavy industry firms in Korea, which are highly dependent upon international trade with Western countries including the United States. In light of such trend and concerns, we have tried to predict business performance of heavy industry firms in Korea with data regarding trade policy of the United States. United States International Trade Commission (USITC) levies countervailing duties and anti-dumping duties to firms that violate its fair-trade regulations. In this study, we have performed data analysis with past records of countervailing duties and anti-dumping duties. With results from clustering analysis, it could be concluded that trade policy trends of the Unites States significantly affects the business performance of heavy industry firms in Korea. Furthermore, we have attempted to quantify such effects by employing long short-term memory (LSTM), a popular neural networks model that is well-suited to deal with sequential data. Our major contribution is that we have succeeded in empirically validating the intuitive argument and also predicting the future trend with rigorous data mining techniques. With some improvements, our results are expected to be highly relevant to designing regulations regarding heavy industry in Korea.

Image-Based Automatic Bridge Component Classification Using Deep Learning (딥러닝을 활용한 이미지 기반 교량 구성요소 자동분류 네트워크 개발)

  • Cho, Munwon;Lee, Jae Hyuk;Ryu, Young-Moo;Park, Jeongjun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.751-760
    • /
    • 2021
  • Most bridges in Korea are over 20 years old, and many problems linked to their deterioration are being reported. The current practice for bridge inspection mainly depends on expert evaluation, which can be subjective. Recent studies have introduced data-driven methods using building information modeling, which can be more efficient and objective, but these methods require manual procedures that consume time and money. To overcome this, this study developed an image-based automaticbridge component classification network to reduce the time and cost required for converting the visual information of bridges to a digital model. The proposed method comprises two convolutional neural networks. The first network estimates the type of the bridge based on the superstructure, and the second network classifies the bridge components. In avalidation test, the proposed system automatically classified the components of 461 bridge images with 96.6 % of accuracy. The proposed approach is expected to contribute toward current bridge maintenance practice.

Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification (감정 분류를 이용한 표정 연습 보조 인공지능)

  • Dong-Kyu, Kim;So Hwa, Lee;Jae Hwan, Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1137-1144
    • /
    • 2022
  • In this study, an artificial intelligence(AI) was developed to help with facial expression practice in order to express emotions. The developed AI used multimodal inputs consisting of sentences and facial images for deep neural networks (DNNs). The DNNs calculated similarities between the emotions predicted by the sentences and the emotions predicted by facial images. The user practiced facial expressions based on the situation given by sentences, and the AI provided the user with numerical feedback based on the similarity between the emotion predicted by sentence and the emotion predicted by facial expression. ResNet34 structure was trained on FER2013 public data to predict emotions from facial images. To predict emotions in sentences, KoBERT model was trained in transfer learning manner using the conversational speech dataset for emotion classification opened to the public by AIHub. The DNN that predicts emotions from the facial images demonstrated 65% accuracy, which is comparable to human emotional classification ability. The DNN that predicts emotions from the sentences achieved 90% accuracy. The performance of the developed AI was evaluated through experiments with changing facial expressions in which an ordinary person was participated.

Deep learning algorithms for identifying 79 dental implant types (79종의 임플란트 식별을 위한 딥러닝 알고리즘)

  • Hyun-Jun, Kong;Jin-Yong, Yoo;Sang-Ho, Eom;Jun-Hyeok, Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.196-203
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types. Materials and Methods: A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured. Results: EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2. Conclusion: All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.

Semantic Segmentation of Hazardous Facilities in Rural Area Using U-Net from KOMPSAT Ortho Mosaic Imagery (KOMPSAT 정사모자이크 영상으로부터 U-Net 모델을 활용한 농촌위해시설 분류)

  • Sung-Hyun Gong;Hyung-Sup Jung;Moung-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1693-1705
    • /
    • 2023
  • Rural areas, which account for about 90% of the country's land area, are increasing in importance and value as a space that performs various public functions. However, facilities that adversely affect residents' lives, such as livestock facilities, factories, and solar panels, are being built indiscriminately near residential areas, damaging the rural environment and landscape and lowering the quality of residents' lives. In order to prevent disorderly development in rural areas and manage rural space in a planned manner, detection and monitoring of hazardous facilities in rural areas is necessary. Data can be acquired through satellite imagery, which can be acquired periodically and provide information on the entire region. Effective detection is possible by utilizing image-based deep learning techniques using convolutional neural networks. Therefore, U-Net model, which shows high performance in semantic segmentation, was used to classify potentially hazardous facilities in rural areas. In this study, KOMPSAT ortho-mosaic optical imagery provided by the Korea Aerospace Research Institute in 2020 with a spatial resolution of 0.7 meters was used, and AI training data for livestock facilities, factories, and solar panels were produced by hand for training and inference. After training with U-Net, pixel accuracy of 0.9739 and mean Intersection over Union (mIoU) of 0.7025 were achieved. The results of this study can be used for monitoring hazardous facilities in rural areas and are expected to be used as basis for rural planning.