• 제목/요약/키워드: Neural network image recognition model

검색결과 176건 처리시간 0.029초

딥러닝을 이용한 인스타그램 이미지 분류 (Instagram image classification with Deep Learning)

  • 정노권;조수선
    • 인터넷정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.61-67
    • /
    • 2017
  • 본 논문에서는 딥러닝의 회선신경망을 이용한 실제 소셜 네트워크 상의 이미지 분류가 얼마나 효과적인지 알아보기 위한 실험을 수행하고, 그 결과와 그를 통해 알게 된 교훈에 대해 소개한다. 이를 위해 ImageNet Large Scale Visual Recognition Challenge(ILSVRC)의 2012년 대회와 2015년 대회에서 각각 우승을 차지한 AlexNet 모델과 ResNet 모델을 이용하였다. 평가를 위한 테스트 셋으로 인스타그램에서 수집한 이미지를 사용하였으며, 12개의 카테고리, 총 240개의 이미지로 구성되어 있다. 또한, Inception V3모델을 이용하여 fine-tuning을 실시하고, 그 결과를 비교하였다. AlexNet과 ResNet, Inception V3, fine-tuned Inception V3 이 네 가지 모델에 대한 Top-1 error rate들은 각각 49.58%, 40.42%, 30.42% 그리고 5.00%로 나타났으며, Top-5 error rate들은 각각 35.42%, 25.00%, 20.83% 그리고 0.00%로 나타났다.

HOG와 인공신경망을 이용한 자동차 모델 인식 시스템 성능 분석 (Performance Evaluation of Car Model Recognition System Using HOG and Artificial Neural Network)

  • 박기완;방지성;김병만
    • 한국산업정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.1-10
    • /
    • 2016
  • 본 논문에서는 영상처리와 기계학습을 이용하여 자동차를 판별하는 시스템을 제안하고 그 성능을 확인한다. 차량의 앞면을 인식 하도록 하였으며 앞면을 선택한 이유는 제조사, 모델별로 앞면이 다르고 개조가 힘들기 때문이다. 제안하는 방법은 먼저 학습 데이터로부터 HOG특징을 추출하고, 이 특징 데이터에 대해 인공신경망 학습기법을 적용하여 판별 모델을 구축한다. 그리고 사용자가 자동차의 앞면을 찍으면 그 사진에서 특징점을 추출하고 특징점을 학습된 판별 모델을 거쳐 차량의 정보를 표시한다. 실험 결과, 98%의 높은 평균 인식률을 보였다.

하이브리드 통계적 특징 모델과 신경망을 이용한 자동차 번호판 인식 (Recognition of License Plates Using a Hybrid Statistical Feature Model and Neural Networks)

  • 유신;정병준;강현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1016-1023
    • /
    • 2009
  • 자동차 번호판 인식 시스템은 문자 추출, 특징 추출 등의 영상처리와 추출된 문자를 인식하는 인식기로 구성된다. 특징 추출은 문자 영역의 데이터 감소뿐만 아니라 인식 성능을 결정한다. 따라서 본 논문에서는 번호판 인식의 결과에 영향이 큰 숫자 인식, 특히 숫자의 특징 추출에 초점을 두었으며, 데이터의 군집성을 재배치하여 데이터 간의 최적의 산란도를 확보할 수 있는 통계적 특징의 혼합 모델을 제안하고, 이를 다층 퍼셉트론과 LVQ 신경망을 이용하여 유효성을 검증하였다. 제안된 통계적 특징 추출 방법은 번호판 영상이 갖는 정보를 가장 잘 유지하고, 잡음과 외부 환경에 강건하며 효과적인 방법임을 보여준다.

적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구 (A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image)

  • 김춘호;이주영
    • 한국항공우주학회지
    • /
    • 제49권1호
    • /
    • pp.63-73
    • /
    • 2021
  • 본 논문은 공중 혹은 해상배경에 표적과 화염이 동시에 존재할 때, 무인항공기에 장착된 EOTS(Electro-Optical Targeting System; 전자광학 추적장비)가 표적을 추적하기 위해 화염의 영향에 강건하도록 표적을 자동 인식하는 기법을 제안한다. 제안한 기법은 표적과 화염의 적외선 영상을 Gradient Vector Field로 변환하고, 각 Gradient magnitude를 Polynomial Curve Fitting 도구에 적용하여 다항식 계수를 추출 및 얕은 신경망 모델에 학습함으로써, 표적과 화염을 자동으로 인식한다. 확보한 표적 및 화염의 다양한 적외선 영상 DB를 학습데이터, 검증데이터, 시험데이터로 분류하여 제안한 기법의 표적 및 화염 자동 인식 성능을 확인하였다. 본 알고리듬을 활용하여 무인항공기의 자동비행 중 충돌회피, 산불탐지, 공중 및 해상의 목표물을 자동탐지 및 인식하는 분야에 적용될 수 있다.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

밀리미터파의 손동작 인식 알고리즘에 관한 연구 (Study on Hand Gestures Recognition Algorithm of Millimeter Wave)

  • 남명우;홍순관
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.685-691
    • /
    • 2020
  • 본 논문에서는 77GHz를 사용하는 밀리미터파 레이더 센서의 반향 신호를 이용하여 손동작의 움직임을 추적한 후 얻어진 데이터로 0부터 9까지의 숫자들을 인식하는 알고리즘을 개발하였다. 손동작을 감지하여 레이더 센서로부터 얻어진 반향 신호들은 산란 단면적의 차이 등에 의해 불규칙한 점들의 군집형태를 보인다. 이들로부터 유효한 중심점을 얻기 위해 3차원 좌푯값들을 이용해 K-Means 알고리즘을 적용하였다. 그리고 얻어진 중심점들을 연결하여 숫자 형태의 이미지를 생성하였다. 얻어진 이미지와 스무딩 기법을 적용해 사람의 손글씨 형태와 유사하게 만든 이미지를 MNIST(Modified National Institute of Standards and Technology database)로 훈련된 CNN(Convolutional Neural Network) 모델에 입력하여 인식률을 비교하였다. 실험은 두 가지 방법으로 진행되었다. 먼저 스무딩 기법을 적용한 이미지와 적용하지 않은 이미지를 사용한 인식 실험에서는 각각 평균 77.0%와 81.0%의 인식률을 얻었다. 그리고 학습데이터를 확장(augmentation)한 CNN 모델의 실험에서는 스무딩 기법을 적용한 이미지와 적용하지 않은 이미지를 사용한 인식 실험에서 각각 평균 97.5%와 평균 99.0%의 인식률을 얻었다. 본 연구는 레이더 센서를 이용한 다양한 비접촉 인식기술에 응용이 가능할 것으로 판단된다.

가버 웨이블릿 신경망 기반 적응 표정인식 시스템 (Adaptive Facial Expression Recognition System based on Gabor Wavelet Neural Network)

  • 이상완;김대진;김용수;변증남
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2006
  • 본 논문에서는 6개의 특징점을 이용하는 가버 웨이블릿 신경망 기반 적응 표정인식 시스템을 제안한다. 특징 추출부를 포함하는 초기 네트워크의 구성은 Levenberg-Marquardt 기반의 학습방법이 사용되며, 따라서 특징 추출부 결정에 있어서 경험적 요소를 배재시킬 수 있다. 또한 새로운 사용자에 대한 적응 네트워크를 구성하기 위해서 개선된 보상함수를 가지는 Q-학습과, 비지도 퍼지 신경망 모델을 사용하였다. Q-학습을 통해서는 개인 사용자에 대해 분리도가 좋은 특징벡터를 얻을 수 있는 가버필터 세트를 얻을 수 있으며, 퍼지 신경망을 통해서는 사용자의 얼굴변화에 맞게 인식기를 변화시킬 수 있다. 따라서 제안된 시스템은 사용자의 얼굴변화를 따라갈 수 있는 좋은 적응 성능을 보이고 있다.

말초혈액영상에서 신경망 모델을 이용한 적혈구의 형태학적 변이 분류 (Morphological Variation Classification of Red Blood Cells using Neural Network Model in the Peripheral Blood Images)

  • 김경수;김판구
    • 한국정보처리학회논문지
    • /
    • 제6권10호
    • /
    • pp.2707-2715
    • /
    • 1999
  • Recently, there have been researches to automate processing and analysing images in the medical field using image processing technique, a fast communication network, and high performance hardware. In this paper, we propose a system to be able to analyze morphological abnormality of red-blood cells for peripheral blood image using image processing techniques. To do this, we segment red-blood cells in the blood image acquired from microscope with CCD camera and then extract UNL fourier features to classify them into 15 classes. We reduce the number of multi-variate features using PCA to construct a more efficient classifier. Our system has the best performance in recognition rate, compared with two other algorithms, LVQ3 and k-NN. So, we show that it can be applied to a pathological guided system.

  • PDF

심층신경망을 활용한 활주로 가시거리 예측 모델 개발 (Development for Estimation Model of Runway Visual Range using Deep Neural Network)

  • 구성관;홍석민
    • 한국항행학회논문지
    • /
    • 제21권5호
    • /
    • pp.435-442
    • /
    • 2017
  • 안개 등의 영향을 받는 활주로 시정은 비행장에서 항공기 이착륙의 가능 여부를 결정하는 주요 지표중 하나이다. 운송용 항공기가 운항되는 공항의 경우 활주로 시정을 포함한 주요 국지 기상 예보를 시행하며, 이를 항공종사자가 확인할 수 있도록 하고 있다. 본 논문은 최근 영상 처리, 음성 인식, 자연어 처리 등의 다양한 분야에 적용되고 있는 심층신경망을 활주로 시정 예측에 적용하여 국지 비행장의 활주로 시정 예측 모델을 개발하고 이를 활용한 예측을 수행하였다. 적용 대상 비행장의 과거 실제 기상 관측 값을 활용하여 신경망 학습 후 시정에 대한 예측을 수행하였고, 기존 관측 데이터와 비교한 결과 비교적 정확한 예측 결과를 확인하였다. 또한 개발된 모델은 별도의 예보 기능이 없는 해당 비행장에서 참고할 수 있는 기상정보를 생성하는데 사용될 수 있을 것이다.

HMM을 이용한 알파벳 제스처 인식 (Alphabetical Gesture Recognition using HMM)

  • 윤호섭;소정;민병우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF