• 제목/요약/키워드: Neural network image recognition model

검색결과 176건 처리시간 0.03초

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

Split-Attention 백본 네트워크를 활용한 차선 인식에 관한 연구 (A Study on Lane Detection Based on Split-Attention Backbone Network)

  • 송인서;이선우;권장우;원종훈
    • 한국ITS학회 논문지
    • /
    • 제19권5호
    • /
    • pp.178-188
    • /
    • 2020
  • 본 논문에서는 split-attention 네트워크를 백본으로 특징을 추출하는 차선인식 CNN 네트워크를 제안한다. split-attention은 CNN의 특징 추출 과정에서 feature map의 각 channel에 가중치를 부여하는 방법으로, 빠르게 변화하는 자동차의 주행 환경에서 안정적으로 이미지의 특징을 추출할 수 있다. Tusimple 데이터 셋을 활용하여 본 논문에서 제안하는 네트워크를 학습·평가하였으며, 백본 네트워크의 레이어 수에 따른 성능 변화를 비교·분석 하였다. 평가 결과 최대 96.26%의 정확도로 최신 연구에 준하는 결과를 얻었으며, FP의 경우 0.0234(2.34%)로 비교 연구 중 가장 좋은 결과를 보여준다. 따라서, 실제 차량의 주행 환경 등에서도 본 연구에서 제안하는 모델을 사용하여 오인식 없이 안정적인 차선 인식이 가능하다.

준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘 (Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild)

  • 김대하;송병철
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.351-360
    • /
    • 2018
  • 인간 감정 인식은 컴퓨터 비전 및 인공 지능 영역에서 지속적인 관심을 받는 연구 주제이다. 본 논문에서는 wild 환경에서 이미지, 얼굴 특징점 및 음성신호로 구성된 multi-modal 신호를 기반으로 여러 신경망을 통해 인간의 감정을 분류하는 방법을 제안한다. 제안 방법은 다음과 같은 특징을 갖는다. 첫째, multi task learning과 비디오의 시공간 특성을 이용한 준 감독 학습을 사용함으로써 영상 기반 네트워크의 학습 성능을 크게 향상시켰다. 둘째, 얼굴의 1 차원 랜드 마크 정보를 2 차원 영상으로 변환하는 모델을 새로 제안하였고, 이를 바탕으로 한 CNN-LSTM 네트워크를 제안하여 감정 인식을 향상시켰다. 셋째, 특정 감정에 오디오 신호가 매우 효과적이라는 관측을 기반으로 특정 감정에 robust한 오디오 심층 학습 메커니즘을 제안한다. 마지막으로 소위 적응적 감정 융합 (emotion adaptive fusion)을 적용하여 여러 네트워크의 시너지 효과를 극대화한다. 제안 네트워크는 기존의 지도 학습과 반 지도학습 네트워크를 적절히 융합하여 감정 분류 성능을 향상시켰다. EmotiW2017 대회에서 주어진 테스트 셋에 대한 5번째 시도에서, 제안 방법은 57.12 %의 분류 정확도를 달성하였다.

인공지능기법을 이용한 동적 이미지 도면 부품정보 인식에 관한 연구 (A Study on the Dynamic Image Drawing Part Information Recognition using Artificial Intelligence)

  • 이주상;강성인;이상배
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.449-453
    • /
    • 2006
  • 본 논문은 시설물의 효율적인 유지보수 관리를 위해 이미지 도면의 부품정보를 효율적으로 활용할 수 있는 방안을 제시한다. 시설물 설계 도면에는 시설물을 구성하는 부품에 대한 정보가 표현되어 있고, 각 부품을 구분하기 위해 레전드 문자가 표기되어 있다. 본 논문은 이미지 도면의 레전드 문자 인식을 위해 인공지능 기법을 적용한다. 마지막으로, 본 논문에서 제안한 방법의 효율성을 평가하기 위해 인공지능기법을 도면관리시스템에 적용한다.

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

표정 분류 연구 (Analysis of facial expression recognition)

  • 손나영;조현선;이소현;송종우
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.539-554
    • /
    • 2018
  • 최근 등장하는 다양한 사물인터넷 기기 혹은 상황인식 기반의 인공지능에서는 사용자와 기기의 상호작용이 중요시 된다. 특히 인간을 대상으로 상황에 맞는 대응을 하기 위해서는 인간의 표정을 실시간으로 인식하여 빠르고 정확한 판단을 내리는 것이 필요하다. 따라서, 보다 빠르고 정확하게 표정을 인식하는 시스템을 구축하기 위해 얼굴 이미지 분석에 대한 많은 연구들이 선행되어 왔다. 본 연구에서는 웹사이트 Kaggle에서 제공한 48*48 8-bit grayscale 이미지 데이터셋을 사용하여 얼굴인식과 표정분류로 구분된 두 단계를 거치는 얼굴표정 자동 인식 시스템을 구축하였고, 이를 기존의 연구와 비교하여 자료 및 방법론의 특징을 고찰하였다. 분석 결과, Face landmark 정보에 주성분분석을 적용하여 단 30개의 주성분만으로도 빠르고 효율적인 예측모형을 얻을 수 있음이 밝혀졌다. LDA, Random forest, SVM, Bagging 중 SVM방법을 적용했을 때 가장 높은 정확도를 보이며, LDA방법을 적용하는 경우는 SVM 다음으로 높은 정확도를 보이며, 매우 빠르게 적합하고 예측하는 것이 가능하다.

합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 유사상표 검색 모형 개발 (A Study on Similar Trademark Search Model Using Convolutional Neural Networks)

  • 윤재웅;이석준;송칠용;김연식;정미영;정상일
    • 경영과정보연구
    • /
    • 제38권3호
    • /
    • pp.55-80
    • /
    • 2019
  • 전 세계적으로 온라인 상거래 시장 규모가 성장함에 따라 국제 및 국내 기업의 상표권이 침해되는 사례가 빈번하게 발생하고 있다. 다양한 연구 및 보고서에 따르면, 해외 기업 또는 개인이 국내 기업의 상표권을 침해한 사례와, 국내 기업 간 발생하는 상표권 분쟁 사례가 증가하고 있는 것으로 나타나고 있으며, 특허청의 보고서에 따르면 기업의 규모가 작을수록 상표보호를 위한 사전 예방활동을 수행하지 않는다고 응답한 비율이 높은 것으로 나타났다. 이러한 문제는 선등록 상표에 대한 사전조사 또는 자사의 상표보호를 위해 소요되는 인력과 비용이 원인인 것으로 판단된다. 한편, 국내에서 선등록상표에 대한 사전조사를 위해 상용되는 서비스를 살펴보면 상표 이미지를 활용한 검색 서비스를 제공하고 있지 않은 상황이다. 이로 인해 국내 대다수의 기업은 자사의 상표 보호 및 선등록 상표에 대한 사전조사 수행 시 방대한 양의 선등록된 상표를 수작업으로 조사해야하는 문제가 발생한다. 따라서 본 연구에서는 기업의 상표권 보호 및 선등록 상표에 대한 사전조사 수행 시 투입되는 인력 및 비용절감과, 국내외에서 발생하고 있는 상표권 침해 문제를 해결하기 위해 합성곱 신경망 기법을 활용한 지능형 유사 상표 검색 모델을 개발하고자 한다. 지적 재산권 전문가가 선정한 테스트 데이터를 활용하여 지능형 유사 상표 검색 모델의 정확도를 측정한 결과 ResNet V1 101의 성능이 가장 높게 나타났다. 해당 결과를 통해 이미지 분류 알고리즘이 단순한 사물 인식 분야뿐만 아니라 이미지 검색 분야에서도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 상표 이미지 데이터를 활용했다는 측면에서 실제 산업 환경에서 활용성이 높을 것으로 사료된다.

ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost

  • Thongsuwan, Setthanun;Jaiyen, Saichon;Padcharoen, Anantachai;Agarwal, Praveen
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.522-531
    • /
    • 2021
  • We describe a new deep learning model - Convolutional eXtreme Gradient Boosting (ConvXGB) for classification problems based on convolutional neural nets and Chen et al.'s XGBoost. As well as image data, ConvXGB also supports the general classification problems, with a data preprocessing module. ConvXGB consists of several stacked convolutional layers to learn the features of the input and is able to learn features automatically, followed by XGBoost in the last layer for predicting the class labels. The ConvXGB model is simplified by reducing the number of parameters under appropriate conditions, since it is not necessary re-adjust the weight values in a back propagation cycle. Experiments on several data sets from UCL Repository, including images and general data sets, showed that our model handled the classification problems, for all the tested data sets, slightly better than CNN and XGBoost alone and was sometimes significantly better.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.