• 제목/요약/키워드: Neural network control

검색결과 2,587건 처리시간 0.026초

DSP를 이용한 조립용 로봇의 실시간 신경회로망 제어기 설계 (Design of Real-Time Newral-Network Controller Based-on DSPs of a Assembling Robot)

  • 차보남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.113-118
    • /
    • 1999
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important n the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

인공신경망을 이용한 좌심실보조장치의 제어 시뮬레이션 (Control Simulation of Left Ventricular Assist Device using Artificial Neural Network)

  • 김상현;정성택;김훈모
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 1998
  • 본 연구에서 복잡한 비선형적 특성을 갖는 공압식 좌심실보조장치의 모델링과 제어에 인공신경망을 제안하였다. 일반적으로 좌심실보조장치는 비선형이 보상되어야 하는데 인공신경망은 학습능력에 의해 비선형 동적 시스템의 제어에 적용될 수 있다. 인공신경망 모델링을 통해 좌심실 보조장치의 동적 모델을 모델링하고 이를 기반으로 하여 인공신경망 제어기가 설계되었다. 제안된 알고리즘을 이용한 좌심실보조장치의 모델링과 제어성능 및 유효성은 컴퓨터 시뮬레이션에 의해 증명되었다.

  • PDF

K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발 (Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

신경회로망을 이용한 자율주행차량의 속도 및 조향제어 (Speed and Steering Control of Autonomous Vehicle Using Neural Network)

  • 임영철;류영재;김의선;김태곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.274-281
    • /
    • 1998
  • This paper describes a visual control of autonomous vehicle using neural network. Visual control for road-following of autonomous vehicle is based on road image from camera. Road points on image are inputs of controller and vehicle speed and steering angle are outputs of controller using neural network. Simulation study confirmed the visual control of road-following using neural network. For experimental test, autonomous electric vehicle is designed and driving test is realized

  • PDF

구륜 이동 로봇의 경로추적을 위한 퍼지-신경망을 이용한 제어기 설계 (A Design of Fuzzy-Neural Network Algorithm Controller for Path-Tracking in Wheeled Mobile Robot)

  • 김제현;김상원;이용현;박종국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.255-258
    • /
    • 2003
  • It is hard to centrol the wheeled mobile robot because of uncertainty of modeling, non-holonomic constraint and so on. To solve the problems, we design the controller of wheeled mobile robot based on fuzzy-neural network algorithm. In this paper, we should research the problem of classical controller for path-tracking algorithm and design of Fuzzy-Neural Network algorithm controller. Classical controller acquired different control value according to change of initial position and direction. In this control value having very difficult and having acquired a lot of trial and error Fuzzy is implemented to adaptive adjust control value by error and change of error and neural network is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-neural network controller is effective.

  • PDF

동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식 (Control Method of an Unknown Nonlinear System Using Dynamical Neural Network)

  • 정경권;임중규;엄기환
    • 한국정보통신학회논문지
    • /
    • 제6권3호
    • /
    • pp.487-492
    • /
    • 2002
  • 본 논문에서는 동적신경회로망을 이용한 미지의 비선형 시스템 제어 방식을 제안하였다. 제안한 방식은 비선형 시스템의 상태 공간 모델과 유사한 형태의 신경회로망을 구성하여 비선형 시스템을 식별하고, 식별한 정보를 이용하여 제어기를 설계하는 방식이다. 제안한 방식의 유용성을 확인하기 위하여 단일 관절 매니플레이터를 대상으로 시뮬레이션을 수행한 결과 우수한 제어 성능을 확인하였다.

Sliding mode control based on neural network for the vibration reduction of flexible structures

  • Huang, Yong-An;Deng, Zi-Chen;Li, Wen-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.377-392
    • /
    • 2007
  • A discrete sliding mode control (SMC) method based on hybrid model of neural network and nominal model is proposed to reduce the vibration of flexible structures, which is a robust active controller developed by using a sliding manifold approach. Since the thick boundary layer will reduce the virtue of SMC, the multilayer feed-forward neural network is adopted to model the uncertainty part. The neural network is trained by Levenberg-Marquardt backpropagation. The design objective of the sliding mode surface is based on the quadratic optimal cost function. In course of running, the input signal of SMC come from the hybrid model of the nominal model and the neural network. The simulation shows that the proposed control scheme is very effective for large uncertainty systems.

A PROPOSAL OF ENHANSED NEURAL NETWORK CONTROLLERS FOR MULTIPLE CONTROL SYSTEMS

  • Nakagawa, Tomoyuki;Inaba, Masaaki;Sugawara, Ken;Yoshihara, Ikuo;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.201-204
    • /
    • 1998
  • This paper presents a new construction method of candidate controllers using Multi-modal Neural Network(MNN). To improve a control performance of multiple controller, we construct, candidate controllers which consist of MNN. MNN can learn more complicated function than multilayer neural network. MNN consists of preprocessing module and neural network module. The preprocessing module transforms input signals into spectra which are used as input of the following neural network module. We apply the proposed method to multiple control system which controls the cart-pole balancing system and show the effectiveness of the proposed method.

  • PDF