• 제목/요약/키워드: Neural network: Linear Program

검색결과 25건 처리시간 0.024초

비선형제한조건을 갖는 최적화문제 신경회로망 (Neural Networks for Optimization Problem with Nonlinear Constraints)

  • 강민제
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2002
  • Hopfield는 선형 제한조건을 갖는 선형프로그램밍을 풀 수 있는 신경회로망을 제안하였는 데, 이 논문에서는 제한조건함수가 비선형함수를 포함하는 일반적인 최적화문제를 해결할 수 있는 신경망으로 확장하였다. 또한, 최적화문제를 신경회로망에 매핑시키는 방법, 그리고 회로로 구성하는 방법들이 논의되었다.

신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어 (Simple AI Robust Digital Position Control of PMSM using Neural Network Compensator)

  • 윤성구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.620-623
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a fedforward recall and error back-propagation training. Since the total number of nodes are only eight this system can be easily realized by the general microprocessor. During the normal operation the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. IN addition the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Singal Processor DS1102 Board (TMS320C31) The basic DSP software is used to write C program which is compiled by using ANSI-C style function prototypes.

  • PDF

재구성 가능한 신경망 프로세서의 설계 (A Design of Reconfigurable Neural Network Processor)

  • 장영진;이현수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.368-371
    • /
    • 1999
  • In this paper, we propose a neural network processor architecture with on-chip learning and with reconfigurability according to the data dependencies of the algorithm applied. For the neural network model applied, the proposed architecture can be configured into either SIMD or SRA(Systolic Ring Array) without my changing of on-chip configuration so as to obtain a high throughput. However, changing of system configuration can be controlled by user program. To process activation function, which needs amount of cycles to get its value, we design it by using PWL(Piece-Wise Linear) function approximation method. This unit has only single latency and the processing ability of non-linear function such as sigmoid gaussian function etc. And we verified the processing mechanism with EBP(Error Back-Propagation) model.

  • PDF

선형예측계수와 뇌파의 변화를 이용한 신경회로망 기반 운전자의 졸음 감지 시스템 (Neural-network-based Driver Drowsiness Detection System Using Linear Predictive Coding Coefficients and Electroencephalographic Changes)

  • 정의필;한형섭
    • 융합신호처리학회논문지
    • /
    • 제13권3호
    • /
    • pp.136-141
    • /
    • 2012
  • 운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호인 뇌파 (Electroencephalogram, EEG)와 안구전도 (Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜에 의거하여 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하고 선형예측(Linear Predictive coding, LPC) 계수를 특징벡터로 한 신경회로망 기반 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)을 가지고도 96.5%라는 높은 분류 결과를 얻어 짧은 순간에 일어날 수 있는 운전 시 돌발 상황을 실시간으로 검출 가능성을 확인하였다.

대규모 신경망 시뮬레이션을 위한 칩상 학습가능한 단일칩 다중 프로세서의 구현 (Design of a Dingle-chip Multiprocessor with On-chip Learning for Large Scale Neural Network Simulation)

  • 김종문;송윤선;김명원
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.149-158
    • /
    • 1996
  • In this paper we describe designing and implementing a digital neural chip and a parallel neural machine for simulating large scale neural netsorks. The chip is a single-chip multiprocessor which has four digiral neural processors (DNP-II) of the same architecture. Each DNP-II has program memory and data memory, and the chip operates in MIMD (multi-instruction, multi-data) parallel processor. The DNP-II has the instruction set tailored to neural computation. Which can be sed to effectively simulate various neural network models including on-chip learning. The DNP-II facilitates four-way data-driven communication supporting the extensibility of parallel systems. The parallel neural machine consists of a host computer, processor boards, a buffer board and an interface board. Each processor board consists of 8*8 array of DNP-II(equivalently 2*2 neural chips). Each processor board acn be built including linear array, 2-D mesh and 2-D torus. This flexibility supports efficiency of mapping from neural network models into parallel strucgure. The neural system accomplishes the performance of maximum 40 GCPS(giga connection per second) with 16 processor boards.

  • PDF

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • 제33권1호
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.

신경회로망을 이용한 비선형 프로그래밍회로 (Nonlinear Programming Circuit using Neural Networks)

  • 강민제
    • 융합신호처리학회논문지
    • /
    • 제2권4호
    • /
    • pp.77-84
    • /
    • 2001
  • 신경망을 이용한 선형프로그랭 회로를 홉프필드가 제안한 이후로 이에 관한 많은 논문들이 발표되었으며, 그 중에는 비선형 프로그래밍 문제에 관한 것들도 많다. 그래서 비용함수가 비선형인 경우는 해결이 되었으나 제한조건이 비선형인 경우에는 해결되지 못한 상태이다. 이 논문에서는 제한조건이 비선형인 경우를 포함하는 즉 비용함수와 제한조건 모두 비선형인 경우를 풀 수 있는 일반적인 비선형프로그래밍 신경망을 제안하고자 한다.

  • PDF

적응형 AE신호 형상 인식 프로그램 개발자 회전체 금속 접촉부 이상 분류에 관한 적용 연구 (Development of Adaptive AE Signal Pattern Recognition Program and Application to Classification of Defects in Metal Contact Regions of Rotating Component)

  • 이강용;이종명;김준섭
    • 비파괴검사학회지
    • /
    • 제15권4호
    • /
    • pp.520-530
    • /
    • 1996
  • 본 연구에서는 음향방출법을 이용하여 로터리 압축기의 인공 결함을 분류하기 위한 연구를 수행하였다. 이를 위해 프로그램을 개발하였고 선형 분류기, 경험적 Bayesian 분류기, 신경 회로망 분류기를 함께 사용하여 비교하였다. 그 결과 신경 회로망 분류기가 인식률 면에서 유리하였으며 신경 회로망 분류기의 경우 99%이상의 인식률을 얻을 수 있었다.

  • PDF

순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델 (Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm)

  • 정현석;류종혁;정석권
    • 수산해양기술연구
    • /
    • 제60권1호
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

신경회로망에 의한 공모된 멀티미디어 핑거프린트의 검출 (Detection of Colluded Multimedia Fingerprint by Neural Network)

  • 노진수;이강현
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.80-87
    • /
    • 2006
  • 최근 인터넷 응용 프로그램과 관련 기술의 발전에 따라 디지털 멀티미디어 콘텐츠의 보급과 사용이 쉬워지고 있다. 디지털 신호는 복제가 용이하고 복제된 신호는 원신호와 동일한 품질을 갖는다. 이러한 문제점을 해결하고 저작권 보호를 위해 멀티 미디어 핑거프린트가 연구되어지고 있다. 핑거프린팅 기법은 암호학적인 기법들을 이용하여 디지털 데이타를 불법적으로 재배포한 사용자를 찾아냄으로써 디지털 데이타의 저작권을 보호한다. 핑거프린팅 기법은 대칭적이나 비대칭적인 기법과 달리 사용자만이 핑거프린트가 삽입된 데이타를 알 수 있고 데이타가 재배포되기 전에는 사용자의 익명성이 보장되는 기법이다. 본 논문에서는 신경회로망에 의한 공모된 멀티미디어 핑거프린트의 검출 알고리즘을 제안한다. 제안된 알고리즘은 불법공모방지 코드 생성과 에러정정을 위한 신경회로망으로 구성되어 있다. BIBD(Balance Incomplete Block Design) 기반의 불법공모방지 코드는 평균화 선형 공모공격에 대해 100% 공모코드 검출이 이루어졌으며, 에러비트 정정을 위해 (n,k)코드를 사용한 홉필드 신경회로망은 2비트 이내의 에러비트를 정정할 수 있음을 확인하였다.