• 제목/요약/키워드: Neural conduction

검색결과 32건 처리시간 0.023초

The relationship between nerve conduction studies and neuropathic pain in sciatic nerve injury due to intramuscular injection

  • Fidanci, Halit;Ozturk, Ilker
    • The Korean Journal of Pain
    • /
    • 제34권1호
    • /
    • pp.124-131
    • /
    • 2021
  • Background: Sciatic nerve injury due to intramuscular injection (SNIII) is still a health problem. This study aimed to determine whether there is a correlation between neuropathic pain and electrodiagnostic findings in SNIII. Methods: Patients whose clinical and electrodiagnostic findings were compatible with SNIII participated in this retrospective cohort study. Compound muscle action potential (CMAP) and sensory nerve action potential (SNAP) amplitudes of the sural, superficial peroneal, peroneal, and tibial nerves were graded from 1 to 4. Leeds assessment of neuropathic symptoms and signs scale (LANSS) was applied to all patients. Results: Forty-eight patients were included in the study, 67% of whom had a LANSS score ≥ 12. Sural SNAP amplitude abnormalities were present in 8 (50%) out of 16 patients with a LANSS score < 12, and 28 (87.5%) out of 32 patients with a LANSS score ≥ 12, with significant differences between the groups (P = 0.011). There was a positive correlation between the LANSS score and the sural SNAP amplitude grading (P = 0.001, r = 0.476). A similar positive correlation was also found in the LANSS score and the tibial nerve CMAP amplitude grading (P = 0.004, r = 0.410). Conclusions: This study showed a positive correlation between the severity of tibial nerve CMAP/sural SNAP amplitude abnormality and LANSS score in SNIII. Neuropathic pain may be more common in SNIII patients with sural nerve SNAP amplitude abnormality.

Patterns of Nerve Conduction Abnormalities in Patients with Type 2 Diabetes Mellitus According to the Clinical Phenotype Determined by the Current Perception Threshold

  • Park, Joong Hyun;Won, Jong Chul
    • Diabetes and Metabolism Journal
    • /
    • 제42권6호
    • /
    • pp.519-528
    • /
    • 2018
  • Background: Clinical manifestations of diabetic peripheral neuropathy (DPN) vary along the course of nerve damage. Nerve conduction studies (NCS) have been suggested as a way to confirm diagnoses of DPN, but the results have limited utility for evaluating clinical phenotypes. The current perception threshold (CPT) is a complementary method for diagnosing DPN and assessing DPN symptoms. We compared NCS variables according to clinical phenotypes determined by CPT measurements. Methods: We retrospectively enrolled patients with type 2 diabetes mellitus who underwent both NCS and CPT tests using a neurometer. CPT grades were used to determine the clinical phenotypes of DPN: normoesthesia (0 to 1.66), hyperesthesia (1.67 to 6.62), and hypoesthesia/anesthesia (6.63 to 12.0). The Michigan Neuropathy Screening Instrument (MNSI) was used to determine a subjective symptom score. DPN was diagnosed based on both patient symptoms (MNSI score ${\geq}3$) and abnormal NCS results. Results: A total of 202 patients (117 men and 85 women) were included in the final analysis. The average age was 62.6 years, and 71 patients (35.1%) were diagnosed with DPN. The CPT variables correlated with MNSI scores and NCS variables in patients with diabetes. Linear regression analyses indicated that hypoesthesia was associated with significantly lower summed velocities and sural amplitudes and velocities, and higher summed latencies, than normoesthesia. Sural amplitude was significantly lower in patients with hyperesthesia than in patients with normoesthesia. Conclusion: NCS variables differed among patients with diabetes according to clinical phenotypes based on CPT and decreased sural nerve velocities was associated with hyperesthesia.

신경망을 이용한 다중 심리-생체 정보 기반의 부정 감성 분류 (Classification of Negative Emotions based on Arousal Score and Physiological Signals using Neural Network)

  • 김아영;장은혜;손진훈
    • 감성과학
    • /
    • 제21권1호
    • /
    • pp.177-186
    • /
    • 2018
  • 감성은 복잡하고 다양한 요인들에 의해 영향을 받기 때문에 다각적인 측면에서 고려되어야 한다. 본 연구에서는 심리 평가 척도의 하나인 각성(arousal) 지표와 다중 생체신호에서 추출된 생체지표 반응을 이용하여 중립 및 부정 감성(슬픔, 공포, 놀람)의 분류하였다. 이를 위하여 감성에 따른 생체지표 반응의 차이를 확인하였고, 다중 신경망 알고리즘 기반의 감성 인식기를 적용하여 이들 감성이 얼마나 정확하게 분류되는가를 확인하였다. 총 146명의 실험 참가자(평균 연령 $20.1{\pm}4.0$, 남성 41%)를 대상으로 감성 유발 자극을 제시하고 동시에 생체신호(심전도, 혈류맥파, 피부전기활동)를 측정하였다. 또한 감성 유발 자극에 대한 심리 반응을 감성 평가 척도로 평가하였다. 측정된 생체신호에서 심박률(HR), NN 간격의 표준편차(SDNN), 혈류량(BVP), 맥파전달시간(PTT), 피부전도수준(SCL), 피부전도반응(SCR)을 추출하였다. 결과 분석을 위하여 감성 자극에 대한 각성도와 안정 상태와 감성 상태의 생체지표 반응을 활용하였다. 또한 감성 분류를 위하여 다중 신경망 기반의 감성 인식기를 활용하였다. 그 결과, 감성에 따른 생체지표 반응의 차이를 확인하였고, 이들 감성의 분류 성능은 각성도와 모든 생체지표 특징들을 조합하였을 때 정확도가 가장 높음(86.9%)을 확인하였다. 본 연구는 심리 및 생체지표 추출과 기계학습 기술의 적용을 통하여 부정 감성을 분류할 수 있음을 제안하며, 이는 인간의 감성을 탐지하는 감성 인식 기술을 확립하는데 기여할 것으로 예상한다.

신경가동성에 대한 신경생물학과 신경생역학적 이해 (Neurobiology and Neurobiomechanics for Neural Mobilization)

  • 김재헌;육군창;배성수
    • The Journal of Korean Physical Therapy
    • /
    • 제15권2호
    • /
    • pp.67-74
    • /
    • 2003
  • Nervous system is clinically important, and involved in most disorders directly or indirectly. It could be injury and be a source of symptoms. Injury of central or peripheral nervous system injury may affect that mechanism and interrupt normal function. An understanding of the concepts of axonal transport is important for physical therapist who treat injury of nerves. Three connective tissue layers are the endoneurium, perineurium, epineurium. Each has its own special structural characteristics and functional properties. The blood supply to the nervous system is well equipped in all dynamic and static postures with intrinsic and extrinsic vasculation. After nerve injury, alternations in the ionic compression or pressures within this environment may interfere with blood flow and, consequently conduction and the flow of axoplasm. The cytoskeleton are not static. On the contrary, elements of the cytoskeleton are dynamically regulated and are very likely in continual motion. It permits neural mobility. There are different axonal transport systems within a single axon, of which two main flows have been identified : First, anterograde transport system, Secondly, retrograde transport system. The nervous system adapts lengthening in two basic ways. The one is that the development of tension or increased pressure within the tissues, increased intradural pressure. The other is movements that are gross movement and movement occurring intraneurally between the connective tissues and the neural tissues. In this article, we emphasize the biologic aspects of nervous system that influenced by therapeutic approaches. Although identified scientific information in basic science is utilized at clinic, we would attain the more therapeutic effects and develop the physical therapy science.

  • PDF

Expression and Localization of Brain Glutamate Dehydrogenase with Its Monoclonal Antibody

  • 이종은;최수영;조성우
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.71-80
    • /
    • 1998
  • Glutamate dehydrogenase (GDH) is one of the main enzymes involved in the formation and metabolism of the neurotransmitter glutamate. In the present study, we investigated the distribution of the GDH-immunoreactive cells in the rat brain using monoclonal antibodies against bovine brain GDH isoprotein. GDH-immunoreactive cell were distributed in the basal ganglia, thalamus and the nuclei belong to substantia innominata, and its connecting area, subthalamic nucleus, zona incerta, and substantia niqra. We could see GDH-immunoreactive cells in the hippocampus, septal nuclei associated with the limbic system, the anterior thalamic nuclei connecting between the hypothalamus and limbic system, and its associated structures, amygdaloid nuclear complex, the dorsal raphe and median raphe nuclei and the reticular formation of the midbrain. The GDH-immunoreactive cells were shown in the pyramidal neurons of the cerebral cortex, the Purkinie cells of the cerebella cortex, their associated structures, ventral thalamic nuclei and the reticular thalamic nuclei that seem to function as neural conduction in the thalamus.

  • PDF

Tandem Repeats (CCTTT)n in the Promoter of iNOS Gene in Korean Genome

  • ;유민
    • 대한의생명과학회지
    • /
    • 제15권2호
    • /
    • pp.167-170
    • /
    • 2009
  • Nitric oxide is an important factor to regulate the biochemical reactions in the body such as expansion of blood vessel, neural conduction and antimicrobial activity. There are two forms of nitric oxide synthase and iNOS has attracted most attention because it is involved in the development of diabetes and cardiac disease condition. There are several regulatory sequences in the promoter region of iNOS gene. One of them is (CCTTT)n. It has been reported that the number of tandem repeat of (CCTTT)n varies from population to population. So, we analyzed (CCTTT)n polymorphism in Korean genome for the purpose of comparison. According to our present study Koreans are different from other Asians reported previously because $(CCTTT)_{10}$ is the highest incidence as opposed to $(CCTTT)_{12}$ for other countries. This study should facilitate the understanding of the expression of iNOS gene in different population.

  • PDF

치과시술에 사용되는 국소마취제 (Local Anesthetics for Dental Procedure)

  • 김철홍;윤지영
    • 대한치과마취과학회지
    • /
    • 제13권3호
    • /
    • pp.71-79
    • /
    • 2013
  • Local pain management is the most critical aspect of patient care in dentistry. Local anesthesia is a reversible blockade of nerve conduction in an applied area that produces loss of sensation. The chemical agents used to produce local anesthesia stabilize neuronal membranes by inhibiting the ionic fluxes required for the propagation of neural impulses. Proper local anesthesia permits the dental surgeon to perform the necessary surgical procedure in a careful, gentle fashion that will be less stressful for both the operator and the patient. The improvements in agents for local anesthesia are probably the most significant advances that have occurred in dental science. Today's anesthetics are safe, effective, and can be administered with insignificant soft tissue damage and minimal concerns for allergic reactions. This article reviews the widely used local anesthetic agents for obtaining local anesthesia, and also discusses some frequently seen complications.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Journal of Audiology & Otology
    • /
    • 제23권3호
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • 대한청각학회지
    • /
    • 제23권3호
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

정상성인의 신경전도속도에 관한 연구 (A Study of Nerve Conduction Velocity of Normal Adults)

  • 최경찬;허종상;변영주;박충서;양창헌
    • Journal of Yeungnam Medical Science
    • /
    • 제6권1호
    • /
    • pp.151-163
    • /
    • 1989
  • 건강한 성인 83명을 무작위로 선정하여 실시한 신경전도속도 검사에서 다음과 같은 결과를 얻었다. 1) 상지의 정중신경에서는 운동신경의 TL이 3.0-4.2msec 이고, MNCV는 각각 52.1-70.3m/sec(W-E), 44.6-71.0m/sec(E-Ax), 56.6-70.8m/sec(W-E), 50.5-75.1m/sec(E-Ax)이며, CNAP의 진폭은 $6.5-46.1{\mu}V$였다. 2) 척골신경에서는 운동신경의 TL이 2.4-3.4msec이고, MNCV는 각각 54.6-72.8m/sec(W-E), 41.1-64.9m/sec(E-Ax)이며, 진폭은 3.1-12.0mV였다. 척골신경의 MNCV는 각각 31.1-44.7m/sec(F-W)m, 55.9-70.9m/sec(W-E), 46.9-67.1m/sec(E-Ax)이며, CNAP의 진폭은 4.8-42.9${\mu}V$범위였다. 3) 요골신경에서는 운동신경의 TL이 1.9-2.7msec이고, MNCV는 53.1-77.5m/sec(W-E)이며, CMAP의 진폭은 1.1-6.6mV범위였다. 요골신경의 SNCV는 각각 38.5-52.1m/sec(F-V), 53.2-75.2m/sec(W-E) 이며, CNAP의 진폭은 $2.5-9.2{\mu}V$범위였다. 4) 하지의 비골신경에서는 운동신경의 TL이 3.5-5.7msec이며, MNCV는 각각 44.4-58.6m/sec(A-FH), 42.8-65.8m/sec(FH-PF)이며, CMAP의 진폭은 0.6-12.7mV 범위였다. 5) 후경골신경에서는 TL이 4.0-6.2m/sec이며, MNCV는 40.6-60.6m/sec이며, CMAP의 진폭은 3.9-29.2mV범위였다. 6) 비골신경의 SNCV는 37.5-49.5m/sec이며, CNAP의 진폭은 $0.7-17.1{\mu}V$범위였다. 7) H-반사의 평균 잠복기는 28.4msec였다.

  • PDF