• Title/Summary/Keyword: Network robustness

Search Result 498, Processing Time 0.028 seconds

Uncertainty-Compensating Neural Network Control for Nonlinear Systems (비선형 시스템의 불확실성을 보상하는 신경회로망 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1597-1600
    • /
    • 2010
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The composed of the control input by using RBF neural networks and auxiliary input to compensate for effects of the approximation errors and disturbances. In the results, using this scheme, the output tracking error between the plant and the reference model can asymptotically converge to zero in the presence of bounded disturbances and approximation errors. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

Indirect Adaptive Sliding Mode Control Using Parameter Estimation of Hopfield Network (Hopfield 신경망의 파라미터 추정을 이용한 간접 적응 가변구조제어)

  • Ham, Jae-Hoon;Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1037-1041
    • /
    • 1996
  • Input-output linearization technique in nonlinear control does not guarantee the robustness in the presence of parameter uncertainty or unmodeled dynamics, etc. However, it has been used as an important preliminary step in achieving additional control objectives, for instance, robustness to parameter uncertainty and disturbance attenuation. An indirect adaptive control scheme based on input-output linearization is proposed in this paper. The scheme consists of a Hopfield network for process parameter identification and an adaptive sliding mode controller based on input-output linearization, which steers the system response into a desired configuration. A numerical example is presented for the trajectory tracking of uncertain nonlinear dynamic systems with slowly time-varying parameters.

  • PDF

Effect of Potential Model Pruning on Official-Sized Board in Monte-Carlo GO

  • Oshima-So, Makoto
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.54-60
    • /
    • 2021
  • Monte-Carlo GO is a computer GO program that is sufficiently competent without using knowledge expressions of IGO. Although it is computationally intensive, the computational complexity can be reduced by properly pruning the IGO game tree. Here, I achieve this by using a potential model based on the knowledge expressions of IGO. The potential model treats GO stones as potentials. A specific potential distribution on the GO board results from a unique arrangement of stones on the board. Pruning using the potential model categorizes legal moves into effective and ineffective moves in accordance with the potential threshold. Here, certain pruning strategies based on potentials and potential gradients are experimentally evaluated. For different-sized boards, including an official-sized board, the effects of pruning strategies are evaluated in terms of their robustness. I successfully demonstrate pruning using a potential model to reduce the computational complexity of GO as well as the robustness of this effect across different-sized boards.

Internal Model Control for Unstable Overactuated Systems with Time Delays

  • Mahmoud, Ines;Saidi, Imen
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, we have proposed a new internal model control structure (IMC). It is aimed at unstable overactuated multivariable systems whose transfer matrices are singular and unstable. The model inversion problem is essential to understand this structure. Indeed, the precision between the output of the process and the setpoint is linked to the quality of the inversion. This property is preserved in the presence of an additive disturbance at the output. This inversion approach proposed in this article can be applied to multivariable systems with no minimum phase or minimum phase shift with or without delays in their transfer matrices. It is proven by an example of simulation through which we have shown its good performance as a guarantee of stability, precision as well as rapidity of system responses despite the presence of external disturbances and we have tested this control structure in the frequency domain hence the robustness of the IMC.

A study on Communication Robustness Testing for Industrial Control Devices (산업용 제어기기의 통신 견고성 시험 방안 연구)

  • Park, Kyungmi;Shin, Donghoon;Kim, WooNyon;Kim, SinKyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1099-1116
    • /
    • 2019
  • Industrial control systems(ICS) are widely used in various industrial area and critical infrastructure. To mitigate security threats on ICS, the security assurance test for industrial control devices has been introduced and operating. The test includes testing of the security function of the device itself and testing of communication robustness. In this paper, we describe the security requirements of EDSA, Achilles, and Korea's TTA standard(security requirements for ICS). And also, we analyzed the characteristics of communication robustness test(CRT) of each certification. CRT verifies the device's operation of essential function while transmitting fuzzing and stress packets. Existing test methods are mostly focused on the embedded devices and are difficult to apply to various devices. We propose a method to test communication robustness which reflect the characteristics of control H/W, control S/W, field devices and network devices in ICS. In the future, we will apply the proposed communication robustness test to actual products and present solutions for arising issues.

Performance Evaluation of Wavelet-based ECG Compression Algorithms over CDMA Networks (CDMA 네트워크에서의 ECG 압축 알고리즘의 성능 평가)

  • 김병수;유선국
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.663-669
    • /
    • 2004
  • The mobile tole-cardiology system is the new research area that support an ubiquitous health care based on mobile telecommunication networks. Although there are many researches presenting the modeling concepts of a GSM-based mobile telemedical system, practical application needs to be considered both compression performance and error corruption in the mobile environment. This paper evaluates three wavelet ECG compression algorithms over CDMA networks. The three selected methods are Rajoub using EPE thresholding, Embedded Zerotree Wavelet(EZW) and Wavelet transform Higher Order Statistics Coding(WHOSC) with linear prediction. All methodologies protected more significant information using Forward Error Correction coding and measured not only compression performance in noise-free but also error robustness and delay profile in CDMA environment. In addition, from the field test we analyzed the PRD for movement speed and the features of CDMA 1X. The test results show that Rajoub has low robustness over high error attack and EZW contributes to more efficient exploitation in variable bandwidth and high error. WHOSC has high robustness in overall BER but loses performance about particular abnormal ECG.

Feature Visualization and Error Rate Using Feature Map by Convolutional Neural Networks (CNN 기반 특징맵 사용에 따른 특징점 가시화와 에러율)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we presented the experimental basis for the theoretical background and robustness of the Convolutional Neural Network for object recognition based on artificial intelligence. An experimental result was performed to visualize the weighting filters and feature maps for each layer to determine what characteristics CNN is automatically generating. experimental results were presented on the trend of learning error and identification error rate by checking the relevance of the weight filter and feature map for learning error and identification error. The weighting filter and characteristic map are presented as experimental results. The automatically generated characteristic quantities presented the results of error rates for moving and rotating robustness to geometric changes.

A CMAC network based controller

  • Koo, Keun-Mo;Kim, Jong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.634-637
    • /
    • 1994
  • This paper presents a CMAC network based controller on the basis of Lyapunov theory. CMAC network is employed to approximate and to compensate the uncertainties induced by inaccurate modelling of the system. For the improvement of robustness under the bounded disturbances and the approximation error of the CMAC, the adaptation scheme with a deadzone and an additional control input are developed.

  • PDF

A neural network architecture for dynamic control of robot manipulators

  • Ryu, Yeon-Sik;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1113-1119
    • /
    • 1989
  • Neural network control has many innovative potentials for intelligent adaptive control. Among many, it promises real time adaption, robustness, fault tolerance, and self-learning which can be achieved with little or no system models. In this paper, a dynamic robot controller has been developed based on a backpropagation neural network. It gradually learns the robot's dynamic properties through repetitive movements being initially trained with a PD controller. Its control performance has been tested on a simulated PUMA 560 demonstrating fast learning and convergence.

  • PDF

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results