• Title/Summary/Keyword: Network models

Search Result 3,898, Processing Time 0.027 seconds

Data-driven Modeling for Valve Size and Type Prediction Using Machine Learning (머신 러닝을 이용한 밸브 사이즈 및 종류 예측 모델 개발)

  • Chanho Kim;Minshick Choi;Chonghyo Joo;A-Reum Lee;Yun Gun;Sungho Cho;Junghwan Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.214-224
    • /
    • 2024
  • Valves play an essential role in a chemical plant such as regulating fluid flow and pressure. Therefore, optimal selection of the valve size and type is essential task. Valve size and type have been selected based on theoretical formulas about calculating valve sizing coefficient (Cv). However, this approach has limitations such as requiring expert knowledge and consuming substantial time and costs. Herein, this study developed a model for predicting valve sizes and types using machine learning. We developed models using four algorithms: ANN, Random Forest, XGBoost, and Catboost and model performances were evaluated using NRMSE & R2 score for size prediction and F1 score for type prediction. Additionally, a case study was conducted to explore the impact of phases on valve selection, using four datasets: total fluids, liquids, gases, and steam. As a result of the study, for valve size prediction, total fluid, liquid, and gas dataset demonstrated the best performance with Catboost (Based on R2, total: 0.99216, liquid: 0.98602, gas: 0.99300. Based on NRMSE, total: 0.04072, liquid: 0.04886, gas: 0.03619) and steam dataset showed the best performance with RandomForest (R2: 0.99028, NRMSE: 0.03493). For valve type prediction, Catboost outperformed all datasets with the highest F1 scores (total: 0.95766, liquids: 0.96264, gases: 0.95770, steam: 1.0000). In Engineering Procurement Construction industry, the proposed fluid-specific machine learning-based model is expected to guide the selection of suitable valves based on given process conditions and facilitate faster decision-making.

Automated Data Extraction from Unstructured Geotechnical Report based on AI and Text-mining Techniques (AI 및 텍스트 마이닝 기법을 활용한 지반조사보고서 데이터 추출 자동화)

  • Park, Jimin;Seo, Wanhyuk;Seo, Dong-Hee;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.69-79
    • /
    • 2024
  • Field geotechnical data are obtained from various field and laboratory tests and are documented in geotechnical investigation reports. For efficient design and construction, digitizing these geotechnical parameters is essential. However, current practices involve manual data entry, which is time-consuming, labor-intensive, and prone to errors. Thus, this study proposes an automatic data extraction method from geotechnical investigation reports using image-based deep learning models and text-mining techniques. A deep-learning-based page classification model and a text-searching algorithm were employed to classify geotechnical investigation report pages with 100% accuracy. Computer vision algorithms were utilized to identify valid data regions within report pages, and text analysis was used to match and extract the corresponding geotechnical data. The proposed model was validated using a dataset of 205 geotechnical investigation reports, achieving an average data extraction accuracy of 93.0%. Finally, a user-interface-based program was developed to enhance the practical application of the extraction model. It allowed users to upload PDF files of geotechnical investigation reports, automatically analyze these reports, and extract and edit data. This approach is expected to improve the efficiency and accuracy of digitizing geotechnical investigation reports and building geotechnical databases.

A Study of Married Immigrant Women s Experience of Community Participation based on Interculturalism : focused on Social Economic Community (상호문화주의에 근거한 결혼이주여성의 지역사회참여 경험 연구)

  • Seong Ho Kim
    • Studies on Life and Culture
    • /
    • v.52
    • /
    • pp.57-84
    • /
    • 2019
  • For married immigrant women, social participation is a process of meeting and interacting with community members on a continuous or regular basis. Community participation of married immigrant women has an important role not only in adapting to the new environment but also in improving their quality of life in terms of their self-esteem and life satisfaction. It also forms an important social network of the community and strengthens social capital. However, their social participation should be based not on the level of 'adaptation' or 'settlement', but on mutual awareness that respects and accepts the social and cultural background of migrant women and their native countries, that is interculturalism. Unlike multiculturalism which emphasizes cultural differences, interculturalism emphasizes mutual understanding and mutual interaction among various cultures based on universality. This study examines various theories and policy models of the multiculturalism, and introduces the recently discussed interculturalism. Then, this study applies the issue of the migrant women's social participation by conducting and analyzing a qualitative research. This study took deep interviews with leaders of three selected social economic organizations and conducted Focus Group Interviews with major participants of those groups.

Analysis of Changes in the Concept of Digital Curation through Definitions in Academic Literature (학술 문헌 내 정의문을 통해 살펴본 디지털 큐레이션 개념 변화 분석)

  • Hyunsoo Kim;Hyo-Jung Oh
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.3
    • /
    • pp.269-288
    • /
    • 2024
  • In the era of digital transformation, discussions about digital curation have become increasingly active not only in academia but also in various fields. The primary purpose of this study is to analyze the conceptual changes in digital curation over time, particularly by examining the definition statements related to digital curation as described in academic literature. To achieve this, academic research papers from 2009, when the term "digital curation" was first mentioned, to 2023 were collected, and definition statements that explained relevant concepts were extracted. Basic statistical analyses were conducted. Using DMR topic modeling and word networks, the relationships among keywords and the changes in their importance over time were examined, and a conceptual map of digital curation was made focusing on the main topics. The results revealed that the concept of digital curation is primarily centered around the themes of "data preservation," "traditional curator roles," and "product recommendation curation." Depending on the researchers' intentions for utilizing digital curation, the concept was expanded to include topics such as "content distribution and classification," "information usage," and "curation models." This study is significant in that it analyzed the concept of digital curation through definition statements reflecting the perspectives of researchers. Additionally, the study holds value in explicitly identifying changes in the concepts that researchers emphasize over time through the trends in topic prevalence.

Deep Learning based Brachial Plexus Ultrasound Images Segmentation by Leveraging an Object Detection Algorithm (객체 검출 알고리즘을 활용한 딥러닝 기반 상완 신경총 초음파 영상의 분할에 관한 연구)

  • Kukhyun Cho;Hyunseung Ryu;Myeongjin Lee;Suhyung Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.5
    • /
    • pp.557-566
    • /
    • 2024
  • Ultrasound-guided regional anesthesia is one of the most common techniques used in peripheral nerve blockade by enhancing pain control and recovery time. However, accurate Brachial Plexus (BP) nerve detection and identification remains a challenging task due to the difficulty in data acquisition such as speckle and Doppler artifacts even for experienced anesthesiologists. To mitigate the issue, we introduce a BP nerve small target segmentation network by incorporating BP object detection and U-Net based semantic segmentation into a single deep learning framework based on the multi-scale approach. To this end, the current BP detection and identification was estimated: 1) A RetinaNet model was used to roughly locate the BP nerve region using multi-scale based feature representations, and 2) U-Net was then used by feeding plural BP nerve features for each scale. The experimental results demonstrate that our proposed model produces high quality BP segmentation by increasing the accuracies of the BP nerve identification with the assistance of roughly locating the BP nerve area compared to competing methods such as segmentation-only models.

Malicious Packet Detection Technology Using Machine Learning and Deep Learning (머신러닝과 딥러닝을 활용한 악성 패킷 탐지 기술 연구)

  • Byounguk An;JongChan Lee;JeSung Chi;Wonhyung Park
    • Convergence Security Journal
    • /
    • v.21 no.4
    • /
    • pp.109-115
    • /
    • 2021
  • Currently, with the development of 5G and IoT technology, it is being used in connection with the things used in real life through a network. However, attempts to use networked computers for malicious purposes are increasing, and attacks using malicious codes that infringe the confidentiality and integrity of user information are becoming more intelligent. As a countermeasure to this, research is being conducted on a method of detecting malicious packets using a security control system and AI technology, supervised learning. The cyber security control system is being operated inefficiently in terms of manpower and cost. In addition, in the era of the COVID-19 pandemic, remote work has increased, making it difficult to respond immediately. In addition, malicious code detection using the existing AI technology, supervised learning, does not detect variant malicious code, and has an inaccurate malicious code detection rate depending on the quantity and quality of data. Therefore, in this study, by converging malicious packet detection technologies through various machine learning and deep learning models, the accuracy of malicious packet detection is increased, the false positive rate and the false positive rate are reduced, and a new type of malicious packet can be efficiently detected when intrusion. We propose a malicious packet detection technology.

Analysis on elements of policy changes in character industry (캐릭터산업의 정책변인연구)

  • Han, Chang-Wan
    • Cartoon and Animation Studies
    • /
    • s.33
    • /
    • pp.597-616
    • /
    • 2013
  • Character industry is not only knowledge-based industry chiefly with copyrights but also motive power for creative economy to take a role functionally over the fields of industries because it has industrial characteristic as complement product to promote sale value in manufacturing industry and service industry and increase profit on sales. Since 2003, the national policy related to character has aimed to maximize effect among connected industries, extend its business abroad, enforce copyrights through the improvement of marketing system, develop industrial infrastructure through raising quality of character products. With the result of this policy, the successful cases of connected contents have been crystallized and domestic character industry has stepped up methodically since 2007. It is needed to reset the scales of character industry and industrial stats because there are more know-how of self industry promotion and more related characters through strategy of market departmentalization starting with cartoon, animation, games, novels, movies and musicals. Especially, The Korea government set our target for 'Global Top Five Character Power' since 2009 and has started to carry out to find global star characters, support to establish network among connected industries, diversify promotion channels, and develop licensing business. Particularly, since 2013, There have been prospered the indoor character theme park with time management just like character experimental marketing or Kids cafes using characters, the demand market of digital character focusing on SNS emoticon, and the performance market for character musical consistently. Moreover, The domestic and foreign illegal black markets on off-line have been enlarged, so we need another policy alternative. To prepare for the era of exploding character demand market and diversifying platform, it is needed to set up a solid strategy that is required the elements of policy changes in character industry to vitalize character industry and support new character design and connected contents. the following shows that the elements of policy changes related to the existing policy, the current position of market. Nowadays, the elements of policy changes in domestic character industry are that variety of consumers in the digital character market according to platform diversification, Convergence contents of character goods for the Korean waves, legalization of the illegal black contents market, and controling the tendency of consumers in departmentalized market. This can help find the policy issue entirely deferent with the existing character powers like US, Japan or Europe. In its final analysis, the alternatives are the promotion of models with contract copyrights of domestic and foreign connected contents, the diversification of profit models of platform economy, the additive development of target market related to enlarging the Korean waves, and the strategy of character market for the age-specific tendency according to developing character demand market.

Analysis of Interactions in Multiple Genes using IFSA(Independent Feature Subspace Analysis) (IFSA 알고리즘을 이용한 유전자 상호 관계 분석)

  • Kim, Hye-Jin;Choi, Seung-Jin;Bang, Sung-Yang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.157-165
    • /
    • 2006
  • The change of external/internal factors of the cell rquires specific biological functions to maintain life. Such functions encourage particular genes to jnteract/regulate each other in multiple ways. Accordingly, we applied a linear decomposition model IFSA, which derives hidden variables, called the 'expression mode' that corresponds to the functions. To interpret gene interaction/regulation, we used a cross-correlation method given an expression mode. Linear decomposition models such as principal component analysis (PCA) and independent component analysis (ICA) were shown to be useful in analyzing high dimensional DNA microarray data, compared to clustering methods. These methods assume that gene expression is controlled by a linear combination of uncorrelated/indepdendent latent variables. However these methods have some difficulty in grouping similar patterns which are slightly time-delayed or asymmetric since only exactly matched Patterns are considered. In order to overcome this, we employ the (IFSA) method of [1] to locate phase- and shut-invariant features. Membership scoring functions play an important role to classify genes since linear decomposition models basically aim at data reduction not but at grouping data. We address a new function essential to the IFSA method. In this paper we stress that IFSA is useful in grouping functionally-related genes in the presence of time-shift and expression phase variance. Ultimately, we propose a new approach to investigate the multiple interaction information of genes.

Building battery deterioration prediction model using real field data (머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발)

  • Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.243-264
    • /
    • 2018
  • Although the worldwide battery market is recently spurring the development of lithium secondary battery, lead acid batteries (rechargeable batteries) which have good-performance and can be reused are consumed in a wide range of industry fields. However, lead-acid batteries have a serious problem in that deterioration of a battery makes progress quickly in the presence of that degradation of only one cell among several cells which is packed in a battery begins. To overcome this problem, previous researches have attempted to identify the mechanism of deterioration of a battery in many ways. However, most of previous researches have used data obtained in a laboratory to analyze the mechanism of deterioration of a battery but not used data obtained in a real world. The usage of real data can increase the feasibility and the applicability of the findings of a research. Therefore, this study aims to develop a model which predicts the battery deterioration using data obtained in real world. To this end, we collected data which presents change of battery state by attaching sensors enabling to monitor the battery condition in real time to dozens of golf carts operated in the real golf field. As a result, total 16,883 samples were obtained. And then, we developed a model which predicts a precursor phenomenon representing deterioration of a battery by analyzing the data collected from the sensors using machine learning techniques. As initial independent variables, we used 1) inbound time of a cart, 2) outbound time of a cart, 3) duration(from outbound time to charge time), 4) charge amount, 5) used amount, 6) charge efficiency, 7) lowest temperature of battery cell 1 to 6, 8) lowest voltage of battery cell 1 to 6, 9) highest voltage of battery cell 1 to 6, 10) voltage of battery cell 1 to 6 at the beginning of operation, 11) voltage of battery cell 1 to 6 at the end of charge, 12) used amount of battery cell 1 to 6 during operation, 13) used amount of battery during operation(Max-Min), 14) duration of battery use, and 15) highest current during operation. Since the values of the independent variables, lowest temperature of battery cell 1 to 6, lowest voltage of battery cell 1 to 6, highest voltage of battery cell 1 to 6, voltage of battery cell 1 to 6 at the beginning of operation, voltage of battery cell 1 to 6 at the end of charge, and used amount of battery cell 1 to 6 during operation are similar to that of each battery cell, we conducted principal component analysis using verimax orthogonal rotation in order to mitigate the multiple collinearity problem. According to the results, we made new variables by averaging the values of independent variables clustered together, and used them as final independent variables instead of origin variables, thereby reducing the dimension. We used decision tree, logistic regression, Bayesian network as algorithms for building prediction models. And also, we built prediction models using the bagging of each of them, the boosting of each of them, and RandomForest. Experimental results show that the prediction model using the bagging of decision tree yields the best accuracy of 89.3923%. This study has some limitations in that the additional variables which affect the deterioration of battery such as weather (temperature, humidity) and driving habits, did not considered, therefore, we would like to consider the them in the future research. However, the battery deterioration prediction model proposed in the present study is expected to enable effective and efficient management of battery used in the real filed by dramatically and to reduce the cost caused by not detecting battery deterioration accordingly.

Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR (알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • Advancements in segmentation methodology has made automatic segmentation of brain structures using structural images accurate and consistent. One method of automatic segmentation, which involves registering atlas information from template space to subject space, requires a high quality atlas with accurate boundaries for consistent segmentation. The Allen Mouse Brain Atlas, which has been widely accepted as a high quality reference of the mouse brain, has been used in various segmentations and can provide accurate coordinates and boundaries of mouse brain structures for tractography. Through probabilistic tractography, diffusion tensor images can be used to map comprehensive neuronal network of white matter pathways of the brain. Comparisons between neural networks of mouse and human brains showed that various clinical tests on mouse models were able to simulate disease pathology of human brains, increasing the importance of clinical mouse brain studies. However, differences between brain size of human and mouse brain has made it difficult to achieve the necessary image quality for analysis and the conditions for sufficient image quality such as a long scan time makes using live samples unrealistic. In order to secure a mouse brain image with a sufficient scan time, an Ex-vivo experiment of a mouse brain was conducted for this study. Using FSL, a tool for analyzing tensor images, we proposed a semi-automated segmentation and tractography analysis pipeline of the mouse brain and applied it to various mouse models. Also, in order to determine the useful signal-to-noise ratio of the diffusion tensor image acquired for the tractography analysis, images with various excitation numbers were compared.